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Real-time formalism cont.
In Lecture III we have started a discussion of the real-time or Keldysh-Schwinger formalism.

We have defined various Green’s functions and found their explicit form for non-interacting fields.
Here we include an interaction into our discussion. Using the operator formalism of quantum
field theory (QFT) we introduce the perturbative expansion of contour Green’s functions which
allows one to express the Green’s functions of interacting fields through the sums of products of
free Green’s functions.

Perturbative expansion

� As we remember, the contour Green’s function is defined as

i∆(x, y) ≡ 〈T̃ φ̂(x)φ̂†(y)〉, (1)

where

〈. . .〉 ≡ Tr[ρ̂(t0) . . . ]

Tr[ρ̂(t0)]
. (2)

The trace is taken over a complete set of states of the system at an initial time t0 and the
operators and states are here in the Heisenberg picture.

� The key observation, which allows one to obtain the perturbative expansion, is that an
operator ÔH(t) in the Heisenberg picture can be written through the operator Ôint(t) in the
interaction picture as

ÔH(t) = Ûint(t0, t) Ôint(t) Ûint(t, t0), (3)

where Ûint(t, t0) is the evolution operator in the interaction picture which is

Ûint(t, t0) = T ce
−i

∫ t
t0
dt′ ĤI

int(t
′)

(4)

= 1− i
∫ t

t0

dt′ ĤI
int(t

′) +
(−i)2

2!

∫ t

t0

dt1

∫ t

t0

dt2 T
cĤI

int(t1) Ĥ
I
int(t2) + . . .

ĤI
int is the interaction Hamiltonian in the interaction picture.

Exercise: Prove the equality (3).

� Choosing t > t0, the expectation value of the operator OH(t) is expressed as

〈ÔH(t)〉 = 〈Ûint(t0, t) Ôint(t) Ûint(t, t0)〉

=
〈
T a
[
e−i

∫ t0
t dt′ ĤI

int(t
′)
]
Oint(t)T

c
[
e
−i

∫ t
t0
dt′ ĤI

int(t
′)]〉

, (5)

where T c and T a take care of chronologization and antichronologization of the operators
within the square brackets.

� The expression (5) can be rewritten as

〈ÔH(t)〉 =
〈
T̃
[
e−i

∫
C dt

′ ĤI
int(t

′) Ôint(t)
]〉

=
Tr
[
ρ̂(t0)T̃ [e−i

∫
C dt

′ ĤI
int(t

′)Ôint(t)]
]

Tr
[
ρ̂(t0)

] . (6)

The time integral (denoted as
∫
C

) is taken from t0 to t0 along the Keldysh contour shown

in Fig. 1, where tmax > t > t0, and T̃ orders the operators along the contour.
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Figure 1: The Keldysh contour

� Generalizing the formula (6), the contour Green’s function (1) is written as

i∆(x, y) =
〈
T̃
[
e−i

∫
C dt Ĥ

I
int(t) φ̂int(x) φ̂†int(y)

]〉
, (7)

where tmax is bigger than x0 and y0, and both x0 and y0 are bigger than t0. This conditions
are automatically satisfied when t0 is shifted to −∞ and tmax to ∞.

� Expanding the exponential function in the formula (7) as in Eq. (4), we get the perturbative
expansion of contour Green’s function.

� One may worry that the operators in Eq. (7) are in the interaction picture while the states
are in the Heisenberg picture. However, when the exponential function is expanded and the
Wick theorem, which is discussed further on, is applied, the contour Green’s function (7)
is expressed as a sum of products of free Green’s functions. And when we deal with free
fields the Heisenberg and interaction pictures coincide with each other.

� The problem to be solved is how to calculate the expressions which originate from the
perturbative expansion of the formula (7) which are of the form〈

T̃
[
ĤI

int(t1) Ĥ
I
int(t2) . . . Ĥ

I
int(tn) φ̂int(x) φ̂†int(y)

]〉
, (8)

where n numerates the terms in the expansion (4).

� Further on, we suppress the subscript ‘int’.

� The Lagrangian density of interacting fields includes, except the terms quadratic in fields,
the term or terms of higher power. As an example, we consider the interacting scalar
complex field of the Lagrangian density

L̂(x) = ∂µφ̂(x)∂µφ̂
†(x)−m2φ̂(x)φ̂†(x)− λ

2! 2!

(
φ̂(x)φ̂†(x)

)2
, (9)

where the last quartic term represents the interaction and λ is the coupling constant.

� As we remember, there is a conserved charge in the theory described by the Lagrangian (9)
and there are positively and negatively charged particles.

� The interaction Hamiltonian equals

ĤI(t) =
λ

2! 2!

∫
d3x

(
φ̂(x)φ̂†(x)

)2
, (10)

where x = (t,x).
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� The perturbative expansion is constructed out of non-interacting fields which obey Klein-
Gordon equations. Therefore, the fields are expressed as superpositions of plane waves

φ̂(x) =

∫
d3k

(2π)3
√

2ωk

[
e−ikxâ(k) + eikx b̂†(k)

]
, (11)

φ̂†(x) =

∫
d3k

(2π)3
√

2ωk

[
e−ikx b̂(k) + eikxâ†(k)

]
. (12)

where kµ = (ωk,k) with ωk ≡
√
m2 + k2, and â†(k), b̂†(k) are creation operators of posi-

tively and negatively charged particles, respectively, and â(k), b̂(k) are annihilation opera-
tors.

� We see that the expression (8) is the expectation value of a product of field operators ordered
along the Keldysh contour. The fields are expressed through the creation and annihilation
operators due to Eqs. (11, 12). So, the expression to be computed is

〈α̂1α̂2 . . . α̂m〉, (13)

where αi is either the annihilation or creation operator.

Wick’s theorem

� The Wick’s theorem states that the expectation value 〈α̂1α̂2 . . . α̂m〉 can be expressed as a
sum of products of 〈α̂iα̂j〉.

� We are going to compute 〈α̂1α̂2 . . . α̂m〉. Since the trace is taken over the eigenstates of
particle number operator, the numbers of creation and annihilation operators of a given
particle species must be the same in 〈α̂1α̂2 . . . α̂m〉. So, the number m must be even.
Otherwise the expectation value vanishes.

� We manipulate the expression 〈α̂1α̂2 . . . α̂m〉 moving the operator α̂1 from left to right. In
the first step we get

〈α̂1α̂2 . . . α̂m〉 = 〈[α̂1, α̂2]α̂3 . . . α̂m〉+ 〈α̂2α̂1α̂3 . . . α̂m〉, (14)

where [α̂1, α̂2] is the commutator of α̂1 and α̂2 which is assumed to be a c−number. There-
fore, it can be pull-out of the expectation value. So, we have

〈α̂1α̂2 . . . α̂m〉 = [α̂1, α̂2]〈α̂3 . . . α̂m〉+ 〈α̂2α̂1α̂3 . . . α̂m〉. (15)

� Moving α1 further to the right we commute it with α3, α4, etc. Thus, we obtain

〈α̂1α̂2 . . . α̂m〉 = [α̂1, α̂2]〈α̂3 . . . α̂m〉+ [α̂1, α̂3]〈α̂2 . . . α̂m〉+ · · ·+ [α̂1, α̂m]〈α̂2 . . . α̂m−1〉

+〈α̂2α̂3 . . . α̂mα̂1〉. (16)

� Now, we write down the last term explicitly and use the cyclic property of trace

〈α̂2α̂3 . . . α̂mα̂1〉 ≡
Tr[ρ̂ α̂2α̂3 . . . α̂mα̂1]

Tr[ρ̂]
=

Tr[α̂1ρ̂ α̂2α̂3 . . . α̂m]

Tr[ρ̂]
. (17)
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� In the next step, we make an important assumption about the density matrix ρ̂ which
describes the initial state. Specifically, we assume that

α̂iρ̂ = ρ̂ α̂i ηi (18)

where ηi is a c−number. The assumption (18) limits a class of initial states which allow for
the Wick’s decomposition. As we will see, it is satisfied by the equilibrium density matrix

ρ̂ = e−βĤ and by matrices of the form ρ̂ = eÂ where the operator Â linearly depends on
the particle number operator.

� Using the equality (18), Eq. (17) provides

〈α̂2α̂3 . . . α̂mα̂1〉 = η1〈α̂1α̂2 . . . α̂m〉. (19)

� Substituting the result (19) into Eq. (16), we get

〈α̂1α̂2 . . . α̂m〉 =
[α̂1, α̂2]

1− η1
〈α̂3 . . . α̂m〉+

[α̂1, α̂3]

1− η1
〈α̂2 . . . α̂m〉+ · · ·+

[α̂1, α̂m]

1− η1
〈α̂2 . . . α̂m−1〉. (20)

� In the l.h.s. of Eq. (20) there is the expectation value of the product of m operators while
in the r.h.s. of the equation there is a sum of the expectation values of the products of
(m−2) operators. Applying repeatedly the same procedure to every expectation value from
Eq. (20), we finally obtain

〈α̂1α̂2 . . . α̂m〉 =
∑

permutations

[α̂1, α̂2]

1− η1
[α̂3, α̂4]

1− η3
. . .

[α̂m−1, α̂m]

1− ηm−1
, (21)

where the sum is over all permutations of pairs (contractions) of the operators α̂i and α̂j.

� Since

〈α̂iα̂j〉 =
[α̂i, α̂j]

1− ηi
, (22)

we see that the equality (21) can be rewritten as

〈α̂1α̂2 . . . α̂m〉 =
∑

permutations

〈α̂1α̂2〉〈α̂3α̂4〉〈α̂m−1α̂m〉, (23)

which shows that the expectation value of the product of m operators (m > 2) can be
expressed as a sum of products of expectation values of products of two operators. This is
the statement of Wick’s theorem.

� We note that a big part of terms in Eq. (23), which are obtained by permutation of the
operators α̂1, α̂2, . . . α̂m vanish. A non-zero contribution is provided only by the terms where
all two-operator expectation values include one creation and one annihilation operator of
the same particle species.

Simple examples

� To see how the Wick’s theorem works, let us first consider the expectation value 〈â†i âj〉,
where â†i and âj are the creation and annihilation operators of the discretized model of
real scalar field which is discussed in detail in Lecture I. The field is in thermodynamic

equilibrium and the density matrix is ρ̂ = e−βĤ . So, we are going to consider the following
expression

〈â†i âj〉 =
Tr[e−βĤ â†i âj]

Tr[e−βĤ ]
. (24)
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� Since the trace is computed with the eigenstates of the particle number operator n̂i = â†i âi,
one immediately realizes that the expression (24) is nonzero only for i = j. Then, one finds

〈â†i âj〉 = δij
Tr[e−βĤ n̂i]

Tr[e−βĤ ]
= δijni. (25)

� On the other hand Eq. (22) tell us that

〈â†i âj〉 =
[â†i , âj]

1− ηi
. (26)

� We are going to show that the r.h.s of Eq. (25) equals the the r.h.s of Eq. (26).

� Since the annihilation and creation operators satisfy the commutation relation

[âi, â
†
j] = δij, (27)

see Lecture I, Eq. (26) becomes

〈â†i âj〉 =
δij

ηi − 1
. (28)

� So, we have to find ηi which is defined through Eq. (18). For αi = â†i and ρ̂ = e−βĤ , Eq. (18)
is

â†ie
−βĤ = e−βĤ â†iηi, (29)

where Ĥ =
∑

j ωj â
†
j âj.

� Expanding the exponential function, one commutes â†i with ρ̂ and finds after a rather tedious
analysis that

â†ie
−βĤ = e−βĤ â†i + e−βĤ

(
eβωi − 1

)
â†i = e−βĤ â†i e

βωi . (30)

Therefore,

ηi = eβωi =
ni + 1

ni
, (31)

where

ni =
1

eβωi − 1
. (32)

Exercise: Prove the equality (29) with ηi = eβωi .

� Substituting the result (31) into Eq. (28), we reproduce Eq. (25).

� Let us now consider 〈âiâ†j〉. Analogously to Eq. (25), one finds

〈âiâ†j〉 =
Tr[e−βĤ(δij + δijn̂i)]

Tr[e−βĤ ]
= δij(ni + 1). (33)

� The analog of Eq. (28) is

〈âiâ†j〉 =
δij

1− ηi
, (34)
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and ηi in the case equals

ηi = e−βωi =
ni

ni + 1
. (35)

Exercise: Derive Eq. (35) from Eq. (18) for αi = âi and ρ̂ = e−βĤ .

Feynman rules

A calculation of successive terms of perturbative expansion of the contour Green’s function can
be changed into an algorithmic procedure with a set of mnemonic rules analogous to the Feynman
rules of the vacuum QFT. The key element of the procedure are the Feynman diagrams. We are
not going to elaborate the Feynman rule which depend on the field theory under consideration.
Since the Feynman rules of the Keldysh-Schwinger formalism are rather similar to those of the
vacuum QFT, we discuss here only the differences.

� In the vacuum QFT this is the Feynman, or time-ordered, propagator which is perturab-
tively expanded. In the Keldysh-Schwinger formalism the contour Green’s function is ex-
panded. As we know, the contour Green’s function comprises four Green’s functions of real
time arguments and it is often a non-trivial task to extract the function of interest, say ∆

>
<,

form the contour function.

� The second important difference is that instead of the time integration from −∞ to ∞, we
integrate along the Keldysh contour with t0 shifted to −∞ and tmax to ∞.

� The third difference is a role the tadpoles i.e. the loops formed by single lines as that one
shown in Fig. 2. A tadpole corresponds to the Green’s function of space-time arguments
equal to each other like ∆(x, x). The tadpoles do not appear in the vacuum QFT as long
the field vacuum expectation values vanish. In the operator formalism they are effectively
eliminated by the operator normal ordering of the interaction Hamiltonian HI . Then,
〈0| : φ̂(x) φ̂†(x) : |0〉 = 0. In the path-integral formulation the tadpoles, which are actually
infinite, show up but are canceled by properly chosen counterterms.

� In statistical QFT the tadpoles play an important physical role. They appear due finite
system’s density. Since the function ∆(x, x) is ill defined (the contour ordering does not
work), the tadpole is represented by ∆<(x, x).

� If the system under study is stationary and homogeneous, that is space-time translationally
invariant, as it typically happens in case of equilibrium systems, the perturbative expansion
in momentum space in statistical QFT is fully analogous to that in vacuum QFT. The
situation is much more complex when we deal with non-equilibrium inhomogeneous systems.
Then, the Green’s functions depend not only on the difference of their space-time arguments
but on both arguments. Instead of the Fourier transformation, one has to use the Wigner
transformation which leads to some complications.

The differences will be illustrated with a few examples discussed below.
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Figure 2: The first order contributions to the contour Green’s function

First-order contributions to ∆

� Let us now discuss the first-order correction to the contour Green’s function in a theory of
self-interacting complex scalar field described by the Lagrangian (9). The expression to be
computed is

i∆(1)(x, y) = − iλ

2! 2!

∫
C

d4z
〈
T̃
[(
φ̂(z)φ̂†(z)

)2
φ̂(x)φ̂†(y)

]〉
, (36)

where the integral over z0 is performed along the Keldysh contour shown in Fig. 1.

� The plane-wave decompositions (11, 12) show that the expectation values like 〈T̃ φ̂(z)φ̂(x)〉
and 〈T̃ φ̂(z)†φ̂†(y)〉 vanish. So, one realizes that there are two contributions

i∆(1)
a (x, y) = −iλ

∫
C

d4z〈T̃ [φ̂(z)φ̂†(y)]〉〈T̃ [φ̂(z)φ̂†(z)]〉〈T̃ [φ̂†(z)φ̂(x)]〉, (37)

i∆
(1)
b (x, y) = −iλ

2
〈T̃ [φ̂(x)φ̂†(y)]〉

∫
C

d4z〈T̃ [φ̂(z)φ̂†(z)]〉〈T̃ [φ̂(z)φ̂†(z)]〉. (38)

In case of the contribution a, there are two operators φ̂(z) to be paired with φ̂†(y) and

two operators φ̂†(z) to be paired with φ̂(z), the combinatorial factor of 4 is included in the
formula (37). In case of the contribution b, the combinatorial factor equals 2.

� The results (37, 38) can be written as

∆(1)
a (x, y) = iλ

∫
C

d4z∆(x, z) ∆(z, z) ∆(z, y), (39)

∆
(1)
b (x, y) =

iλ

2
∆(x, y)

∫
C

d4z∆(z, z) ∆(z, z), (40)

where ∆(x, y) is the free contour Green’s function. The two contributions are represented
graphically by two diagrams shown in Fig. 2.

Second-order contributions to ∆

� The expression to be computed is

i∆(2)(x, y) = − λ2

(2! 2!)22!

∫
C

d4z1

∫
C

d4z2
〈
T̃
[(
φ̂(z1)φ̂

†(z1)
)2(

φ̂(z2)φ̂
†(z2)

)2
φ̂(x)φ̂†(y)

]〉
. (41)
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Figure 3: The second order contributions to the contour Green’s function

� There are seven second-order contributions

∆(2)
a (x, y) = −#λ2

∫
C

d4z1

∫
C

d4z2 ∆(x, z1) ∆(z1, z1) ∆(z1, z2) ∆(z2, z2) ∆(z2, y), (42)

∆
(2)
b (x, y) = −#λ2

∫
C

d4z1

∫
C

d4z2 ∆(x, z1) ∆(z1, z2) ∆(z2, z1) ∆(z2, z2) ∆(z1, y), (43)

∆(2)
c (x, y) = −#λ2∆(x, y)

∫
C

d4z1

∫
C

d4z2∆(z1, z1) ∆(z1, z2) ∆(z2, z1) ∆(z2, z2), (44)

∆
(2)
d (x, y) = −#λ2

∫
C

d4z1 ∆(x, z1) ∆(z1, z1) ∆(z1, y)

∫
C

d4z2 ∆(z2, z2) ∆(z2, z2), (45)

∆(2)
e (x, y) = −#λ2∆(x, y)

∫
C

d4z1 ∆(z1, z1) ∆(z1, z1)

∫
C

d4z2 ∆(z2, z2) ∆(z2, z2), (46)

∆
(2)
f (x, y) = −#λ2

∫
C

d4z1

∫
C

d4z2 ∆(x, z1) ∆(z1, z2) ∆(z1, z2) ∆(z2, z1) ∆(z2, y), (47)

∆(2)
g (x, y) = −#λ2∆(x, y)

∫
C

d4z1

∫
C

d4z2∆(z1, z2) ∆(z1, z2) ∆(z2, z1) ∆(z2, z1), (48)

where # denotes a numerical coefficient. The contributions are represented by the diagrams
shown in Fig. 3.

Exercise: Derive the numerical factors in Eqs. (42 - 47).

Figure 4: The first and second order contributions to the quantity (49)
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Figure 5: The perturbative expansion of the contour Green’s function

Connected and disconnected diagrams

� The diagram b) in Fig. 2 and the diagrams c), d) and e) in Fig. 3 can be split each into
into two diagrams not cutting any line. These are the disconnected diagrams.

� One observes that the perturbative expansion of the quantity

Tr
[
ρ̂(t0) T̃ [e−i

∫
C dt

′ ĤI
int(t

′)]
]

Tr[ρ̂(t0)]
(49)

gives unity in the zeroth order, the diagram a) from Fig. 4 in the first order and the diagrams
b) and c) from Fig. 4 in the second order.

� It is also not difficult to observe that the perturbative expansion of the contour Green’s
function can be expressed in a way which is shown graphically in Fig. 5.

� Combing the observations, one finds that the disconnected diagrams can be eliminated from
the perturbative expansion of contour Green’s function by redefinition of the function as

i∆(x, y) ≡
Tr
[
ρ̂(t0)T̃ [e−i

∫
C dt Ĥ

I
int(t) φ̂int(x) φ̂†int(y)]

]
Tr[ρ̂(t0)]

(50)

−→ i∆(x, y) ≡
Tr
[
ρ̂(t0)T̃ [e−i

∫
C dt Ĥ

I
int(t) φ̂int(x) φ̂†int(y)]

]
Tr
[
ρ̂(t0)T̃ [e−i

∫
C dt Ĥ

I
int(t)]

] (51)

As one see, the exponential T̃ [e−i
∫
C dt Ĥ

I
int(t)] is included in the denominator of the definition

of the contour Green’s function.

� Further on, we will use the redefined Green’s functions.

Perturbative expansion of real time Green’s functions

� As already mentioned, this is the contour Green’s function which is perturbatively ex-
panded in the Keldysh-Schwinger formalism. Let us now discuss how to extract the real-
time Green’s functions from the contour one. As an example we consider the first order
contribution (40).

� If we want to get the contribution to, say, the function ∆>(x, y) we put x0 on the lower
branch of the contour and y0 on the upper one. We split the integration over z in the
formula (40) into the integration from −∞ to ∞ and from ∞ to −∞. In the first part z0
belongs to the upper branch of the contour and in the second part to the lower branch.



Lecture VI Statistical Quantum Field Theory 10

Thus, we get

∆>
(1)(x, y) = iλ

∫ ∞
−∞

dz0

∫
d3z∆>(x, z) ∆>(z, z) ∆c(z, y) (52)

−iλ
∫ −∞
∞

dz0

∫
d3z∆a(x, z) ∆>(z, z) ∆>(z, y)

= iλ

∫
d4z
[
∆>(x, z) ∆c(z, y)−∆a(x, z) ∆>(z, y)

]
∆>(z, z).

� In analogous way one can find the expressions for ∆>
(1)(x, y), ∆c

(1)(x, y) and ∆a
(1)(x, y).

� At higher orders when there are several integrals along the contour, the procedure to extract
a real-time Green’s function of interest from the contour Green’s function becomes rather
tedious. There is a graphical method to do it which will be discussed later on.

Green’s functions in momentum dependence

� When we deal with a system which is stationary and homogeneous, as is usually the case
of equilibrium systems, the perturbative expansion in momentum space is obtained in sta-
tistical QFT analogously to that in vacuum QFT. As long as the system of interest is
space-time translationally invariant, the Green’s functions depend only the difference of
their space-time arguments, and thus we can apply the Fourier transformation to get the
Green’s functions in momentum space.

� As an example we consider the first order contribution to ∆>(x, y) given by Eq. (52). When
the system is translationally invariant, Eq. (52) becomes

∆>
(1)(x) = iλ

∫
d4z
[
∆>(x− z) ∆c(z)−∆a(x− z) ∆>(z)

]
∆>(0), (53)

where we put y = 0.

� Performing the Fourier transformation, Eq. (53) gives

∆>
(1)(p) = iλ

[
∆>(p) ∆c(p)−∆a(p) ∆>(p)

] ∫ d4k

(2π)4
∆>(k). (54)

� When the system under study is time dependent and/or inhomogeneous, that is, it is not
translationally invariant, the Green’s function depend on both spatial arguments. Then,
instead of the Fourier transformation one can apply the Wigner transformation to describe
the system in momentum space.

� The Wigner transformation is defined as

∆(X, p) =

∫
d4u eip·u∆

(
X +

1

2
u,X − 1

2
u
)
, (55)

and its inverse is

∆
(
X +

1

2
u,X − 1

2
u
)

=

∫
d4p

(2π)4
e−ip·u∆(X, p). (56)
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� Applying the Wigner transformation to Eq. (52), we get

∆>
(1)(X, p) = iλ

∫
d4u

∫
d4z

∫
d4q1
(2π)4

∫
d4q2
(2π)4

∫
d4k

(2π)4
(57)

× exp
[
ip · u− iq1 ·

(
X +

1

2
u− z

)
− iq2 ·

(
z −X +

1

2
u
)]

×
[
∆>
(1

2
X +

1

4
u+

1

2
z, q1

)
∆c
(1

2
X − 1

4
u+

1

2
, q2

)
−∆a

(1

2
X +

1

4
u+

1

2
z, q1

)
∆>
(1

2
X − 1

4
u+

1

2
, q2

)]
∆>(z, p).

One observes that the integrals over u and z, which in case of translationally invariant
system produced the delta functions and allowed one to greatly simplify the expression, are
no longer trivial. The result (57) can be can be simplified only under extra assumptions on
the Green’s functions.

� As we can see, the transition from the description of a given system in the coordinate space
to the description in the momentum space is simple in the case of translationally invariant
systems. In case of systems, which are not translationally invariant, the situation is much
more complex.


