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Symmetry breaking and effective potential
in vacuum QFT

Spontaneous symmetry breaking

� Let us consider a system of real scalar fields with the Lagrangian density

L =
1

2
∂µφ(x)∂µφ(x) +

1

2
µ2φ2(x)− λ

4!
φ4(x)︸ ︷︷ ︸

≡−V (φ)

, (1)

where the mass term has a ‘wrong’ sign as long as µ2 > 0.

� One asks what is a ground state or vacuum of such a system. Since the state is assumed
to be translationally invariant, the field which minimizes the energy must be a constant.
Then, the kinetic term of the Hamiltonian vanishes and the energy is determined by the
potential

V (φ) ≡ 1

2
µ2φ2 − λ

4!
φ4, (2)

which is shown in Fig. 1.

� One immediately finds that the potential is minimized by the non-zero field equal

φ0 = ±
√

6µ2

λ
. (3)

� To quantize the field one redefines it as

φ(x) −→ φ(x)− φ0, (4)

and the Lagrangian density (1) changes into

L =
1

2
∂µφ(x)∂µφ(x)− 1

2

(
− µ2 +

λ

4
φ2

0

)
φ2(x)− λ

3!
φ0φ

3(x)− λ

4!
φ4(x), (5)

where the constant terms and those linear in φ are ignored.
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Figure 1: The classical potential of the Lagrangian density (1)
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� Substituting φ0 given by Eq. (3) into the Lagrangian (5), one finds

L =
1

2
∂µφ(x)∂µφ(x)− 1

2
m2φ2(x)− g

3!
φ3(x)− λ

4!
φ4(x). (6)

where

m2 ≡ 1

2
µ2, g ≡ ±

√
6λµ. (7)

� One observes that the Lagrangian density (1) is invariant under the symmetry φ→ −φ but
the the Lagrangian (6) is not. The choice of one of the two possible ground states leads to
the spontaneous symmetry breaking.

� The method to find a ground state which is described above is purely classical. The ques-
tion arises whether quantum fluctuations of the field do not change the conclusion on the
symmetry breaking. The point is that an analog of the classical filed is the quantum field
expectation value 〈φ〉 and 〈φ2〉 6= 〈φ〉2, nor 〈φ4〉 6= 〈φ〉4. A shape of the potential in Fig. 1
suggests that if the ground state energy is increased above the local maximum due to quan-
tum fluctuations there is no symmetry breaking. An effect of thermal fluctuations can be
even more dramatic than that of quantum ones.

Effective action

� The expectation value of a quantum field is defined in the Heisenberg picture as

〈φ(x)〉 ≡ 〈0 out|φ̂(x)|0 in〉
〈0 out|0 in〉

. (8)

� The expectation value is provided by the generating functional W [J ] as

〈φ(x)〉 =
1

i

∂

∂J(x)
W [J ]

∣∣∣∣
J=0

. (9)

� The generating functional equals

W [J ] = N
∫
Dφ(x) exp

{
i
[
S[φ] +

∫
d4x J(x)φ(x)

]}
, (10)

where the normalization constant N is

N−1 =

∫
Dφ(x) exp

{
iS[φ]

}
. (11)

� Actually, the normalization constant N is of no importance, as further on we will use the
generating functional Z[J ] of connected Green’s function equal

Z[J ] ≡ −i lnW [J ] (12)

and

〈φ(x)〉 =
∂

∂J(x)
Z[J ]

∣∣∣∣
J=0

. (13)
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� We are going to develop a formalism where 〈φ(x)〉 is treated as a dynamical variable. For
this purpose, we define the field expectation value in the presence of J

Φ(x) ≡ 〈φ(x)〉J =
∂

∂J(x)
Z[J ], (14)

and we perform the Legandre transformation Z[J ]→ Γ[〈φ〉J ] as

Γ[Φ] = Z[J ]−
∫
d4x J(x)Φ(x), (15)

which allows one to invert the relation (14) that is to express J(x) through Φ(x).

� The functional Γ[Φ] is called the effective action. To explain a physical meaning of Γ[Φ],
let us compute the derivative

δΓ[Φ]

δΦ(x)
=

∫
d4x′

δJ(x′)

δΦ(x)

δZ[J ]

δJ(x′)︸ ︷︷ ︸
=Φ(x′)

−
∫
d4x′

(
δJ(x′)

δΦ(x)
Φ(x′) + J(x′)

δΦ(x′)

δΦ(x)︸ ︷︷ ︸
=δ(4)(x−x′)

)
. (16)

� Using Eq. (14), we find the key result

δΓ[Φ]

δΦ(x)
= −J(x). (17)

� We note that as long as J(x) 6= 0 and J(x) depends on x, the theory is not translationally
invariant.

� When J = 0, Eq. (17) provides the fundamental relation

δΓ[Φ]

δΦ(x)
= 0, (18)

which is just the reason why Γ[Φ] is called the ‘effective action’: the actual field expectation
value at J = 0 corresponds to the extremum of Γ[Φ], as the classical solution of equation of
motion corresponds to the extremum of S[φ].

Free effective action

� Let us see how the effective action looks like in the simple case of non-interacting field with
the usual mass term. Then, the functional Z0[J ] is

Z0[J ] = −1

2

∫
d4x d4yJ(x) ∆0(x− y) J(y), (19)

and

Φ(x) =
δZ0[J ]

δJ(x)
= −

∫
d4y∆0(x− y)J(y). (20)

We note that even if Φ(x) vanishes for J = 0, Φ(x) is nonzero for J 6= 0.

� The relation (20) can be easily inverted as

J(x) = (� +m2)Φ(x), (21)

where one recognizes the equation of motion of Φ(x).
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� Using the formulas (19) and (21), the Legandre transformation (15) can be performed
explicitly

Γ0[Φ] = Z0[J ]−
∫
d4x J(x)Φ(x) (22)

= −1

2

∫
d4x d4yΦ(x)(

←
�x +m2)∆F (x− y)(�y +m2)Φ(y)

−
∫
d4xΦ(x)(�x +m2)Φ(x).

� Applying the Fourier transformation of the fields and Feynman propagator, one shows that∫
d4x d4yΦ(x)(

←
�x +m2)∆0(x− y)(�y +m2)Φ(y) (23)

=

∫
d4k

(2π)4
Φ(−k)(k2 −m2)Φ(k) = −

∫
d4xΦ(x)(� +m2)Φ(x),

and consequently, the free effective action is

Γ0[Φ] = −1

2

∫
d4xΦ(x)(� +m2)Φ(x). (24)

� Performing the partial integration, Eq. (24) can be rewritten as

Γ0[Φ] =

∫
d4x
[1

2
∂µΦ(x)∂µΦ(x)− 1

2
m2Φ(x)2

]
=

∫
d4xL0

(
Φ(x)

)
, (25)

which shows that the free effective action is the free action of Φ(x).

� The formula (24) can be also written as

Γ0[Φ] =
1

2

∫
d4x d4yΦ(x)∆−1

0 (x− y)Φ(x), (26)

where ∆−1
0 (x− y) is the inverse propagator equal

∆−1
0 (x− y) =

∫
d4k

(2π)4
e−ik(x−y)(k2 −m2), (27)

which obeys ∫
d4y∆0(x− y) ∆−1

0 (y − z) = δ(4)(x− z). (28)

� The formula (26) clearly shows that the effective action generates inverse propagators as

∆−1
0 (x− y) =

δ2Γ0[Φ]

δΦ(x)δΦ(y)
. (29)



Lecture XIV Statistical Quantum Field Theory 5

One-particle irreducible graphs

� We consider systems where Φ = 0 for J = 0. If it happens that Φ = v 6= 0 for J = 0, we
redefine the field as φ(x)→ φ(x)− v and then Φ = 0 at J = 0.

� While the functionals W [J ] and Z[J ] are expanded in powers of J , the effective action can
be expanded in powers of Φ in the following way

Γ[Φ] =
∞∑
n=0

1

n!

∫
d4x1d

4x2 . . . d
4xn Γ(n)(x1, x2, . . . xn) Φ(x1)Φ(x2) . . .Φ(xn), (30)

where Γ(n)(x1, x2, . . . xn) represents one-particle irreducible (1PI) diagrams called proper
vertices or vertex functions.

�

A one-particle irreducible diagram is a connected diagram
that cannot be disconnected by cutting a single internal line.

� The n−point vertex function is generated as

Γ(n)(x1, x2, . . . xn) =
δ

δΦ(x1)
· · · δ

δΦ(xn)
Γ[Φ]

∣∣∣∣
Φ=0

. (31)

� Let us consider one-, two-, three-, and four-point Green’s functions to understand why the
effective action generates the 1PI diagrams.

� The one-point vertex function is

Γ(1)(x) =
δΓ[Φ]

δΦ(x)

∣∣∣∣
Φ=0

= J(x)

∣∣∣∣
Φ=0

= 0 (32)

and it vanishes due to Eq. (17).

� The two-point vertex function is found as

Γ(2)(x1, x2) =
δ2Γ[Φ]

δΦ(x1) δΦ(x2)

∣∣∣∣
Φ=0

= − δJ(x2)

δΦ(x1)

∣∣∣∣
Φ=0

= −
(
δΦ(x1)

δJ(x2)

)−1∣∣∣∣
Φ=0

, (33)

using Eq. (17).

� Since

Φ(x1) =
δZ[J ]

δJ(x1)
, (34)

we have

Γ(2)(x1, x2) = −
(

δ2Z[J ]

δJ(x1)δJ(x2)

)−1∣∣∣∣
Φ=0

= ∆−1(x1, x2). (35)

The two-point full connected Green’s function ∆
(2)
c (x, y) is denoted here and further on as

∆(x, y) with no super- of subscripts.

� The effective action generates the inverse full connected Green’s function in complete anal-
ogy with the result (29) obtained with the free effective action.
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     1PI 

Figure 2: The relation between full connected and 1PI two-point Green’s functions

� We note that ∆(x, y) and ∆−1(x, y) should be treated as matrices and they obey∫
d4y∆(x, y) ∆−1(y, z) = δ(4)(x− z), (36)

which changes into Eq. (28) in case of a translationally invariant system.

� Eq. (35) can be written as

∆(y1, y2) =

∫
d4x1 d

4x2 ∆(y1, x1) Γ(2)(x1, x2) ∆(x2, y2), (37)

and it is represented graphically in Fig. 2. The equation just means that the full connected
propagator is obtained from 1PI two-point function Γ(2) by adding two external legs with
propagators.

� From Eqs. (35) and (35) one can deduce the identity

δ

δΦ(x)
=

∫
d4y

δJ(y)

δΦ(x)

δ

δJ(y)
=

∫
d4y∆−1

J (x, y)
δ

δJ(y)
, (38)

where ∆J(x, y) denotes the two-point connected Green’s function the presence of J 6= 0.
Eq. (38) explains why the effective action generates 1PI graphs: when the derivative δ/δJ
acts on Z[J ] it produces the external line with the propagator. When the derivative δ/δΦ
acts on Z[J ] the propagator is removed. The two subsequent examples show hot it works.

� The three-point vertex function equals

Γ(3)(x1, x2, x3) =
δ3Γ[Φ]

δΦ(x1) δΦ(x2) δΦ(x3)

∣∣∣∣
Φ=0

= − δ

δΦ(x1)

(
δ2Z[J ]

δJ(x2)δJ(x3)

)−1∣∣∣∣
Φ=0

= −
∫
d4y1 ∆−1

J (x1, y1)
δ

δJ(y1)

(
δ2Z[J ]

δJ(x2)δJ(x3)

)−1∣∣∣∣
Φ=0

, (39)

where we first used the result (35) and then the identity (38).

� To compute the derivative δ/δJ(y1), one must remember that(
δ2Z[J ]

δJ(x2)δJ(x3)

)−1

= ∆−1
J (x2, x3) (40)

and that ∆−1
J (x2, x3) should be treated as a matrix. Then,

δ

δJ(y1)

(
δ2Z[J ]

δJ(x2)δJ(x3)

)−1

=

∫
d4y2 d

4y3 ∆−1
J (x2, y2)

δ3Z[J ]

δJ(y1)δJ(y2)δJ(y3)
∆−1
J (y3, x3). (41)
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Figure 3: The relation between full connected and 1PI three-point Green’s functions

� Substituting the result (41) into Eq. (39), we get

Γ(3)(x1, x2, x3) =

∫
d4y1 d

4y2 d
4y3 ∆−1

J (x1, y1) ∆−1
J (x2, y2) ∆−1

J (y3, x3) (42)

× δ3Z[J ]

δJ(y1)δJ(y2)δJ(y3)

∣∣∣∣
Φ=0

=

∫
d4y1 d

4y2 d
4y3 ∆−1(x1, y1) ∆−1(x2, y2) ∆−1(y3, x3) ∆(3)

c (y1, y2, y3).

� The relation (42), which can be rewritten as

∆(3)
c (y1, y2, y3) =

∫
d4x1 d

4x2 d
4x3 ∆(y1, x1) ∆(y2, x2) ∆(y3, x3) Γ(3)(x1, x2, x3), (43)

is represented graphically in Fig. (3).

� The four-point vertex function equals

Γ(4)(x1, x2, x3, x4) =
δ4Γ[Φ]

δΦ(x1) δΦ(x2) δΦ(x3) δΦ(x4)

∣∣∣∣
Φ=0

(44)

=

∫
d4y1 d

4y2 d
4y3 d

4y4 ∆−1
J (x1, y1)

δ

δJ(y1)
∆−1
J (x2, y2) ∆−1

J (y3, x3) ∆−1
J (y4, x4)

× δ3Z[J ]

δJ(y2)δJ(x3)δJ(x4)

∣∣∣∣
Φ=0

.

� One observes that taking the derivative in Eq. (44), we will produce four terms: three with

the product ∆
(3)
c ∆

(3)
c and one with ∆

(4)
c . The computation is very tedious but the final

result can be easily guessed. It is represented in Fig. 4.

Figure 4: The relation between full connected and 1PI four-point Green’s functions
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� The analysis of the above examples shows that the n-point vertex function Γ(n) is obtained

from the n-point connected function ∆
(n)
c by removing the external lines and by subtracting

the diagrams with one internal line connecting two subdiagrams. (The later aspect is
clearly seen in Fig. 4.) This just explains why Γ(n) is represented by one-particle-irreducible
diagrams. A general proof can be done by induction.

Action of ‘shifted field’

� Let us consider the generating functional of the ‘shifted field’ φ→ φ+ φ0, which is

W̃ [J, φ0] =

∫
Dφ(x) exp

{
i
[
S[φ+ φ0] +

∫
d4x J(x)φ(x)

]}
, (45)

where the normalization constant is ignored, as it plays no role here.

� Changing the variable of functional integration φ→ φ+ φ0, one finds

W̃ [J, φ0] =

∫
Dφ(x) exp

{
i
[
S[φ] +

∫
d4x J(x)

(
φ(x)− φ0(x)

)]}
(46)

= exp
[
− i
∫
d4x J(x)φ0(x)

] ∫
Dφ(x) exp

{
i
[
S[φ] +

∫
d4x J(x)φ(x)

]}
= W [J ] exp

[
− i
∫
d4x J(x)φ0(x)

]
.

� Now, one defines the generating functional of connected diagrams

Z̃[J, φ0] ≡ −i ln W̃ [J, φ0] = Z[J ]−
∫
d4x J(x)φ0(x). (47)

� Comparing Eq. (47) with the effective action definition (15), one realizes that

Γ[φ0]

∣∣∣∣
J=0

= Z̃[J = 0, φ0] = −i ln
[ ∫
Dφ(x) exp

(
iS[φ+ φ0]

)]
, (48)

which actually suggests a method to compute the effective action starting with the action
of shifted field S[φ+ φ0].

Effective potential

� In a translationally invariant theory, that is with J = 0, the field expectation value Φ(x)
is independent of x which greatly simplifies the problem of finding a ground state of the
theory.

� The ground state is
φ̄min = 〈φ〉, (49)

and it is found as a solution of the fundamental equation (18), which for translationally
invariant system becomes

∂Γ[φ̄]

∂φ̄
= 0, (50)

where we can use the usual not functional derivative. It is understood here and further on
that J = 0.
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� The effective action also simplifies. Since φ̄ is independent of x, the kinetic term of the
action vanishes and

Γ[φ̄] = −
∫
d4xVeff(φ̄) = −V T Veff(φ̄), (51)

which is just the definition of effective potential with

V T ≡
∫
d4x. (52)

� The vacuum state of the theory is determined by the equation

∂Veff(φ̄)

∂φ̄
= 0, (53)

that is as extremuum of the effective potential.

� The expansion of Γ[Φ] in powers of Φ, which is given the formula (30), is greatly simplified
when Φ = φ̄ is a constant. To derive a respective formula, we rewrite the expansion (30) in
terms of Fourier transformed fields and vertices

Γ[Φ] =
∞∑
n=0

1

n!

∫
d4x1d

4x2 . . . d
4xn

∫
d4p1

(2π)4

d4p2

(2π)4
. . .

d4pn
(2π)4

∫
d4p′1
(2π)4

d4p′2
(2π)4

. . .
d4p′n
(2π)4

× e−i(p1+p′1)x1e−i(p2+p′2)x2 . . . e−i(pn+p′n)xn

× (2π)4δ(4)(p1 + p2 + · · ·+ pn) Γ(n)(p1, p2, . . . , pn) Φ(p′1) Φ(p′2) . . .Φ(p′n)

=
∞∑
n=0

1

n!

∫
d4p1

(2π)4

d4p2

(2π)4
. . .

d4pn
(2π)4

(2π)4δ(4)(p1 + p2 + · · ·+ pn)

× Γ(n)(p1, p2, . . . , pn) Φ(−p1) Φ(−p2) . . .Φ(−pn), (54)

where we have taken into account that position variables x1, x2, . . . , xn of a vertex function
Γ(n)(x1, x2, . . . , xn) are not independent of each other in a translationally invariant system,
because the vertex function must be independent of X ≡ 1

n
(x1+x2+· · ·+xn) which remains

unchanged at translations. This fact is taken into account by including the delta function
δ(4)(p1 + p2 + · · ·+ pn) in Eq. (54).

� Since the Fourier transform of the constant field φ̄ equals∫
d4x eipx φ̄ = (2π)4δ(4)(p) φ̄, (55)

all momentum integrations in Eq. (54) become trivial and

Γ[φ̄] =
∞∑
n=0

1

n!
(2π)4δ(4)(p = 0) Γ(n)(0, 0, . . . , 0) φ̄n = V T

∞∑
n=0

1

n!
Γ(n)(0, 0, . . . , 0) φ̄n, (56)

where the infinite factor (2π)4δ(4)(p = 0) is identified with the space-time volume V T .

� Comparing the equations (51) and (56), the expansion of effective potential is found to be

Veff(φ̄) =
∞∑
n=0

1

n!
Γ(n)(0, 0, . . . , 0) φ̄n, (57)
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which says that the effective potential is given by one-particle irreducible vertices with
vanishing external momenta.

Expansion in loops

� One wonders how to compute the effective potential. Since the field expectation value does
not need to be ‘small’, it is hard to expect that the first few terms of the expansion (57) will
provide a reasonable result. One should also remember that the vertex functions, which
enter the series (57), require, in principle, an infinite summation of Feynman diagrams. So,
it is important to find a sensible approximate method for a computation of Veff .

� As we remember, the whole idea of the effective action and effective potential was formulated
to go beyond the classical method of find a vacuum state of quantum fields. This suggests
that a computation of Veff should be based on a quasi-classical approximation. In other
words, the Planck constant should be treated as a small parameter. It turns out that a loop
expansion of Feynman diagrams is the right approach. Let us explain how it happens.

� First all, we reinstate the Planck constant ~ into our considerations through the replacement

S → S

~
=

1

~

∫
d4xL =

∫
d4x

[ 1

2~

(
∂µφ ∂µφ−m2φ2

)
− λ

4! ~
φ4
]
. (58)

� One asks how the theory changes, when the Lagrangian is divided by ~. Keeping in mind
that the free propagator is inversely proportional to m2 at vanishing four-momentum, one
realizes that the new propagator is ~∆ while the new coupling is λ/~.

� A contribution corresponding to the graph with I internal lines and V vertices is propor-
tional to ~I−V . It is important here that we deal with 1PI graphs, for which there are no
propagators attached to external lines.

� One observes that the number of loops L in a graph with I internal lines and V vertices
is L = I − V + 1 and thus I − V = L − 1. Considering a few examples of diagrams with
different number of loops is helpful to understand the relations.

� A contribution corresponding to the graph with L loops is proportional to ~L−1.

� Since there is an over-all factor ~, which multiplies the diagram to produce a contribution
to the effective potential of the right dimension, the final result is that a contribution
corresponding to the graph with L loops is proportional to ~L.

� The tree graph with no loop corresponds to the classical potential with no ~, the one-loop
graph is proportional to ~ and it provides the first quantum correction, etc.

Computation of effective potential

� As we already know, a perturbative expansion of Γ(n) can be obtained from the expansion

of ∆
(n)
c by amputating external lines and keeping only one-particle irreducible diagrams.

The vertices which remain after the amputation of external lines are connected to the fields
φ̄.

� Further on, we compute the effective potential in two cases: when a symmetry breaking is
not expected and when a spontaneous symmetry breaking occurs in a classical approach.
In the later case the symmetry breaking in the quantum approach is an open question.
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Symmetric system

� Let us first discuss a system of the Lagrangian density

L =
1

2
∂µφ(x)∂µφ(x)−1

2
m2φ2(x)− λ

4!
φ4(x)︸ ︷︷ ︸

≡−V (φ)

, (59)

which is not expected to experience a spontaneous symmetry breaking.

� To identify the vertices to be used in the computation of the effective potential, we consider
the Lagrangian which enters the action (48) of ‘shifted field’. The Lagrangian reads

L =
1

2
∂µφ(x)∂µφ(x)− 1

2
m2
(
φ(x) + φ̄

)2 − λ

4!

(
φ(x) + φ̄

)2
(60)

= − 1

2
m2φ̄2 − λ

4!
φ̄4 +

1

2
∂µφ(x)∂µφ(x)− 1

2
m2φ2(x)

+
(
m2φ̄+

λ

6
φ̄3
)
φ(x)− λ

4
φ̄2φ2(x)− λ

6
φ̄φ3(x)− λ

24
φ4(x).

� The zero-loop vertex functions, which occur due to the mass (1
2
m2φ̄2) and interaction ( λ

4!
φ̄4)

terms of the Lagrangian (60), are

Γ
(2)
0−loop(0, 0) = 2!

1

2
m2 = m2, Γ

(4)
0−loop(0, 0, 0, 0) = 4!

λ

4!
= λ, (61)

where the combinatoric factors 2! and 4! reflect in how many ways two or four fields φ̄ can
be attached to the two- and four-point vertices.

� Substituting the vertices (61) into the expansion (57) we get

V 0−loop
eff (φ̄) =

1

2
m2φ̄2 +

λ

4!
φ̄4, (62)

which is just the classical potential.

� The one-loop vertex function Γ(2) of the first order in λ is represented by the first graph in
Fig. 5 and it occurs due to the interaction (λ

4
φ̄2φ2) term of the Lagrangian (60). We note

that the amputated external lines would be connected to the fields φ̄. The function reads

Γ
(2)
1−loop(0, 0) = −i iλ

2

∫
d4k

(2π)4
i∆(k) = i

λ

2

∫
d4k

(2π)4

1

k2 −m2 + i0+
. (63)

The over-all factor −i comes from the definition (12) of Z[J ]. The included combinatoric
factor 2 reflects the number of ways in which two fields φ̄ are attached to the vertex.





 

 

Figure 5: The one-loop diagrams
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� The one-loop vertex functions Γ(4), Γ(6) and Γ(8), which are of the order λ2, λ3 and λ4, are
represented by the graphs in Fig. 5. All these contributions to the effective potential are
due to the interaction term λ

4
φ̄2φ2.

� One realizes that the one-loop vertex function Γ(2n) of the order λn equals

Γ
(2n)
1−loop(0, 0 . . . , 0) = i

(n− 1)!

2

∫
d4k

(2π)4

( 1
2
λ

k2 −m2 + i0+

)n
, (64)

which is a generalization of the result (63). The factor 1
2
(n− 1)! gives the number of ways

to order n vertices along the loop.

� We note that the one-loop diagram of order λn discussed here is fully analogous to the ring
or daisy diagram analyzed in Lecture XIII.

� Since the vertex functions Γ(k) (64) are nonzero only for even number k = 2n, the expansion
(57) is effectively not in φ̄ but in φ̄2. Then, substituting the vertices (64) into the modified
expansion, one obtains

V 1−loop
eff (φ̄) = i

∫
d4k

(2π)4

∞∑
n=1

1

2n

( 1
2
λ φ̄2

k2 −m2 + i0+

)n
. (65)

� Keeping in mind the Taylor expansion of the logarithm, which is

− ln(1− x) = x+
x2

2
+
x3

3
+ · · · =

∞∑
n=1

xn

n
, (66)

the summation in Eq. (65) can be performed and the result is

V 1−loop
eff (φ̄) = − i

2

∫
d4k

(2π)4
ln

(
1−

1
2
λ φ̄2

k2 −m2 + i0+

)
. (67)

� Our next step is called a Wick rotation. We rotate the integration path in the plane of
complex k0. Instead of integrating over k0 from −∞ to ∞ along the real axis, we integrate
from −i∞ to i∞ along the imaginary axis, see Fig. 6. Introducing the new variable k4 such
that k0 = ik4, we integrate over k4, which is real, from −∞ to ∞.

Figure 6: The Wick rotation
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� We note that due to the position of the poles of the Feynman propagator, the Wick rotation
is made without crossing either pole, as shown in Fig. 6. Therefore, the integral over k0

from −∞ to∞ supplemented with the integral along the big half circle does not change its
value because of the rotation.

� After the Wick rotation the integral (67) is taken over the Euclidean momentum space and
it reads

V 1−loop
eff (φ̄) =

1

2

∫
d4kE
(2π)4

ln

(
1 +

1
2
λ φ̄2

k2
E +m2

)
, (68)

where d4kE = dk1dk2dk3dk4 and k2
E = (p1)2 + (p2)2 + (p3)2 + (p4)2.

� Since k2
E +m2 is positive for any kE = (k4,k), the infinitesimal imaginary element i0+ plays

no role and it is ignored.

� The integral (68) is computed in the four-dimensional spherical coordinates as

V 1−loop
eff (φ̄) =

1

2(2π)4

∫
d3Ω

∫ Λ

0

dk k3 ln

(
1 +

a

k2 +m2

)
, (69)

where a ≡ 1
2
λ φ̄2 and the angular integral, as we remember, equals∫

d3Ω = 2π2, (70)

and k ≡
√
k2
E. Since the integral is ultraviolet divergent, the upper cut-off is introduced in

Eq. (69).

� Performing the partial integration, one finds

V 1−loop
eff (φ̄) =

1

24π2

∫ Λ

0

dk
1

4

dk4

dk
ln

(
1 +

a

k2 +m2

)
(71)

=
1

26π2

[
Λ4 ln

(
1 +

a

Λ2 +m2

)
+ 2a

∫ Λ

0

dk k5

(k2 +m2 + a)(k2 +m2)

]
.

� Since Λ2 � m2 and Λ2 � a ≡ 1
2
λ φ̄2, we approximate the logarithm from Eq. (71) as

Λ4 ln

(
1 +

a

Λ2 +m2

)
≈ Λ4 ln

(
1 +

a

Λ2

)
≈ aΛ2 − 1

2
a2 − am2, (72)

where the terms, which vanish in the limit Λ→∞, are neglected.

� Now, let us compute the elementary integral from Eq. (71). With the variable x ≡ k2 +m2,
the integral becomes

I ≡
∫ Λ

0

dk k5

(k2 +m2 + 1
2
λ φ̄2)(k2 +m2)

=
1

2

∫ Λ2+m2

m2

dx(x−m2)2

(x+ a)x
(73)

=
1

2

∫ Λ2+m2

m2

dx x

x+ a
−m2

∫ Λ2+m2

m2

dx

x+ a
+
m4

2

∫ Λ2+m2

m2

dx

(x+ a)x
.
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� Since ∫ Λ2+m2

m2

dx x

x+ a
= Λ2 − a ln

(Λ2 +m2 + a

m2 + a

)
, (74)

∫ Λ2+m2

m2

dx

x+ a
= ln

(Λ2 +m2 + a

m2 + a

)
, (75)

∫ Λ2+m2

m2

dx

(x+ a)x
= −1

a
ln
(Λ2 +m2 + a

m2 + a

)
+

1

a
ln
(Λ2 +m2

m2

)
, (76)

one finds

I =
1

2
Λ2 − 1

2a

(
m2 + a

)2
ln
(Λ2 +m2 + a

m2 + a

)
+
m4

2a
ln
(Λ2 +m2

m2

)
. (77)

� Because Λ2 � m2 and Λ2 � a ≡ 1
2
λ φ̄2, we can use the approximation

I ≈ 1

2
Λ2 − 1

2a

(
m2 + a

)2
ln
( Λ2

m2 + a

)
+
m4

2a
ln
(Λ2

m2

)
. (78)

� Substituting the results (72) and (78) into Eq. (71), we obtain

V 1−loop
eff (φ̄) =

1

26π2

[
2aΛ2 − 1

2
a2 − am2 −

(
m2 + a

)2
ln
( Λ2

m2 + a

)
+m4 ln

(Λ2

m2

)]
. (79)

� Combining the zero- and one-loop results (62) and (79), the effective potential becomes

Veff(φ̄) =
1

2
m2φ̄2 +

λ

4!
φ̄4 +

1

2
δm2φ̄2 +

δλ

4!
φ̄4 +

λΛ2

64π2
φ̄2 − λm2

128π2
φ̄2 (80)

− λ2

512π2
φ̄4 − 1

64π2

(
m2 +

1

2
λ φ̄2

)2

ln
( Λ2

m2 + 1
2
λ φ̄2

)
+

m4

64π2
ln
(Λ2

m2

)
,

where we have included the mass and coupling constant counterterms to implement a renor-
malization procedure which allows one to eliminate the dependence of the effective potential
on the cut-off parameter Λ.

� We adopt the following renormalization conditions

d2Veff(φ̄)

dφ̄2

∣∣∣∣
φ̄=0

= m2, (81)

d4Veff(φ̄)

dφ̄4

∣∣∣∣
φ̄=0

= λ. (82)

� Since
d2Veff(φ̄)

dφ̄2

∣∣∣∣
φ̄=0

= m2 + δm2 +
λ

32π2

(
Λ2 −m2 ln

Λ2

m2

)
, (83)

the condition (81) gives

δm2 = − λ

32π2

(
Λ2 −m2 ln

Λ2

m2

)
. (84)
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� Because
d4Veff(φ̄)

dφ̄4

∣∣∣∣
φ̄=0

= λ+ δλ− 3λ2

32π2

(
ln

Λ2

m2
− 1
)
, (85)

the condition (82) provides

δλ =
3λ2

32π2

(
ln

Λ2

m2
− 1
)
. (86)

� Let us note that while the mass counterterm is of order λ, the coupling constant counterterm
is of order λ2.

� Substituting the results (84) and (86) into Eq. (80), one finds

Veff(φ̄) =
1

2
m2φ̄2 +

λ

4!
φ̄4 − λ

64π2

(
Λ2 −m2 ln

Λ2

m2

)
φ̄2 +

λ2

256π2

(
ln

Λ2

m2
− 1
)
φ̄4 +

λΛ2

64π2
φ̄2

− λm2

128π2
φ̄2 − λ2

512π2
φ̄4 − 1

64π2

(
m2 +

1

2
λ φ̄2

)2

ln
( Λ2

m2 + 1
2
λ φ̄2

)
+

m4

64π2
ln
(Λ2

m2

)
,(87)

which is manipulated to the form

Veff(φ̄) =
1

2
m2φ̄2 +

λ

4!
φ̄4 (88)

+
1

64π2

[(
m2 +

1

2
λ φ̄2

)2

ln
(

1 +
λ φ̄2

2m2

)
− λ

2
m2 φ̄2 − 3λ2

8
φ̄4
]
,

where the cut-off parameter Λ is absent.

� The one-loop contribution to the effective potential does not make any significant change
when compared with the classical potential. The potential has a minimum at φ̄ = 0.

Mass as an interaction vertex

� The structure of our final result (88) suggests a reorganization of the perturbative expansion
in such a way that the free theory is treated as massless but the mass term is included in
the interaction. Then, the one-loop contribution to the effective potential is due to the
interaction term

1

2

(
m2 +

λ

2
φ̄2
)
φ2. (89)

� Using the propagator of the massless field, instead of Eq. (68) one obtains

V 1−loop
eff (φ̄) =

1

2

∫
d4kE
(2π)4

ln

(
1 +

m2 + 1
2
λ φ̄2

k2
E

)
. (90)

� Further calculations are fully analogous to those which lead us from Eq. (68) to the effective
potential (88). The only difference is that in the final potential there are extra terms
independent of φ̄ which can be simply ignored.

Exercise: Derive the effective potential using the formula (90).
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The third method to compute the effective potential

� One rewrites the integral (68) as

V 1−loop
eff (φ̄) =

1

2

∫
d4kE
(2π)4

ln

(
k2
E +m2 + 1

2
λ φ̄2

k2
E +m2

)
(91)

=
1

2

∫
d4kE
(2π)4

[
ln

(
k2
E +m2 + 1

2
λ φ̄2

m2

)
− ln

(
k2
E +m2

m2

)]
.

� Since the second term in the formula (91) is independent of φ̄, it can be simply ignored and
the one-loop contribution to the effective potential is

V 1−loop
eff (φ̄) =

1

2

∫
d4kE
(2π)4

ln

(
k2
E +m2 + 1

2
λ φ̄2

m2

)
. (92)

� Further calculations are fully analogous to those which lead us from Eq. (68) to the effective
potential (88). The only difference is that in the final potential there are extra terms
independent of φ̄ which can be simply ignored.

Exercise: Derive the effective potential using the formula (92).

Symmetry breaking expected

� We return to the Lagrangian density

L =
1

2
∂µφ(x)∂µφ(x) +

1

2
µ2φ2(x)− λ

4!
φ4(x) (93)

where the mass term has a ‘wrong’ sign µ2 > 0 which causes, at least at a classical level,
the spontaneous symmetry breaking.

� As we already know, the mass term which enters the Lagrangian can be treated as an in-
teraction when the effective potential is computed. Therefore, it does not make a difference
whether the term is positive or negative.

� Instead of the renormalization condition (81), we now use

d2Veff(φ̄)

dφ̄2

∣∣∣∣
φ̄=0

= −µ2. (94)

However, µ2 is not a particle’s mass but a physical parameter of the theory.

� The renormalization condition, which determines the coupling constant, remains Eq. (82).

� The effective potential is given by the formula (88) with m2 replaced by −µ2 that is

Veff(φ̄) = −1

2
µ2φ̄2 +

λ

4!
φ̄4 (95)

+
1

64π2

[(
− µ2 +

1

2
λ φ̄2

)2

ln
(

1− λ φ̄2

2µ2

)
+

1

2
λµ2 φ̄2 − 3λ2

8
φ̄4
]
.
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Figure 7: The real part of the complete effective potential (99) (left panel) and the real part of the one-loop
contribution to the effective potential (99) (right panel).

� One observes that the logarithm, which enters the formula (95), becomes complex when

φ̄2 >
2µ2

λ
. (96)

� As we remember, a logarithm of negative, or more generally, of complex argument is a
multivalued function. When the argument z is expressed as

z = |z|ei(α+2πn), n = 0,±1,±2 . . . (97)

the logarithm of z equals
ln z = ln |z|+ i(α + 2πn). (98)

� Choosing the principle argument as −π ≤ α < π, the real and imaginary parts of the
effective potential (95) read

<Veff(φ̄) = −1

2
µ2φ̄2 +

λ

4!
φ̄4 (99)

+
1

64π2

[(
− µ2 +

1

2
λ φ̄2

)2

ln
∣∣∣1− λ φ̄2

2µ2

∣∣∣+
1

2
λµ2 φ̄2 − 3λ2

8
φ̄4
]
,

=Veff(φ̄) = − 1

64π

(
− µ2 +

1

2
λ φ̄2

)2

Θ(2µ2 − λ φ̄2). (100)

� The real part of the effective potential (99) computed with λ = 0.1 is presented in Fig. 7.
In the left panel the complete effective potential is shown and in the right panel we see the
one-loop contribution which is small (observe the scale) and consequently it hardly modifies
the classical potential. However, it is clearly seen that the radiative correction does not
tend to make the potential symmetric. It makes the minima at finite φ̄ even deeper. So,
we conclude: the state φ̄ = 0 is unstable and the symmetry is broken.

� The imaginary part of effective potential appears because the state φ̄ = 0 is unstable.

� We also note that the renormalization condition (94) should be modified as

d2<Veff(φ̄)

dφ̄2

∣∣∣∣
φ̄=0

= µ2, (101)

because the effective potential is complex. However, it does not change our analysis.
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Massless theory

� The case of massless theory (with m = 0) is of special interest, as one wonders whether
such a theory is symmetric or the symmetry φ→ −φ is spontaneously broken.

� When m = 0, instead of Eq. (80) the effective potential equals

Veff(φ̄) =
λ

4!
φ̄4 +

λΛ2

64π2
φ̄2 +

λ2

256π2

[
ln
(λ φ̄2

2Λ2

)
− 1

2

]
φ̄4 +

1

2
δm2φ̄2 +

δλ

4!
φ̄4. (102)

� It seems natural to adopt the renormalization conditions analogous to Eqs. (81) and (82)
that is

d2Veff(φ̄)

dφ̄2

∣∣∣∣
φ̄=0

= 0, (103)

d4Veff(φ̄)

dφ̄4

∣∣∣∣
φ̄=0

= λ. (104)

The first condition requires that the theory with radiative corrections included remains
massless.

� Since
d2Veff(φ̄)

dφ̄2
=
λ

2
φ̄2 +

λΛ2

32π2
+

λ2

64π2

[
ln
(λ φ̄2

2Λ2

)
+ 2
]
φ̄2 + δm2 +

δλ

2
φ̄2, (105)

the condition (103) gives

δm2 = − λΛ2

32π2
. (106)

� Computing the fourth derivative of the potential (102), one finds

d4Veff(φ̄)

dφ̄4
= λ+ δλ+

λ2

32π2

[
3 ln

(λ φ̄2

2Λ2

)
+ 11

]
, (107)

which shows that the condition (104) cannot be used because φ̄ = 0 is a singular point of
the fourth derivative of Veff(φ̄).

� So, one chooses the renormalization condition

d4Veff(φ̄)

dφ̄4

∣∣∣∣
φ̄=M

= λ, (108)

that is the coupling constant is determined not at φ̄ = 0 but at φ̄ = M . The energy
parameter M is called the renormalization scale.

� Using the formula (107), the condition (108) provides

δλ = − λ2

32π2

[
3 ln

(λM2

2Λ2

)
+ 11

]
. (109)

� Substituting the counterterms (106) and (109) into Eq. (102), one obtains

Veff(φ̄) =
λ

4!
φ̄4 +

λ2

256π2

[
ln
( φ̄2

M2

)
− 25

6

]
φ̄4. (110)
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Figure 8: The effective potential (110) (left panel) and the one-loop contribution to the effective potential (110)
(right panel).

� The potential computed for λ = 0.1 is shown in Fig. 8. As we see, the one-loop contribution
tends to break down the symmetry. One finds that the minimum at finite φ̄ occurs at

λ ln
( φ̄2

M2

)
= −32π2

3
+O(λ). (111)

Since λ ln(φ̄2/M2) ≈ 105, the result (111) is not reliable, as higher order contributions in
the loop expansion are expected to bring higher powers of λ ln(φ̄2/M2).


