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Resummation of infrared divergent diagrams
In this Lecture we continue the discussion on the perturbative expansion of the partition

function started in Lecture XII. We analyze the second order contributions. It appears that
one contribution is badly infrared divergent. We show that a resummation of a class of dia-
grams removes the divergence. We also discuss a reorganized perturbative expansion where the
resummation is achieved by using a resummed Green’s function.

Second order contributions to lnZ

The second order contributions to lnZ are represented by the two diagrams shown in Fig. 1.
We first discuss the diagram a) and then the diagram b).

Diagram a)

� The contribution corresponding to the diagram a) from Fig. 1 is

lnZ
∣∣∣
(2a)

= λ2 1

(4!)2

72

2!︸ ︷︷ ︸
= 1

16

∫ β

0

d4x

∫ β

0

d4y∆(x = 0) ∆(x− y) ∆(y − x) ∆(y = 0), (1)

where x0 = τx, y0 = τy and the combinatorial factor of 72 is found as follows. There are 3!
ways to choose a pair of fields from the four fields φ(x)φ(x)φ(x)φ(x) or φ(y)φ(y)φ(y)φ(y).
There are two ways to pair two unpaired fields φ(x)φ(x) with two unpaired field φ(y)φ(y).
So, the combinatorial factor is (3!)22 = 72.

� Eq. (1) is rewritten as

lnZ
∣∣∣
(2a)

=
λ2

16

(
∆(x = 0)

)2
I, (2)

where

I ≡
∫ β

0

d4x

∫ β

0

d4y∆(x− y) ∆(y − x). (3)

As we remember, ∆(x = 0) = T 2/12. So, the integral I is the quantity to be computed.

� Expressing the function ∆(x) as

∆(τ,x) = T

∞∑
n=−∞

∫
d3p

(2π)3
e−i(ωnτx−p·x)∆(ωn,p), (4)

where

∆0(ωn,p) =
1

ω2
n + ω2

p

(5)

Figure 1: The diagrams representing the 2nd order contributions to lnZ
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with ωn ≡ 2πT n, the quantity (3) becomes

I = T 2V

∞∑
n=−∞

∞∑
n′=−∞

∫
d3p

(2π)3

∫ β

0

dτx

∫ β

0

dτy e
−i(ωn−ωn′ )(τx−τy)∆(ωn,p) ∆(ωn′ ,p). (6)

� Since ∫ β

0

dτ e−i(ωn−ω
′
n)τ = β δnn

′
, (7)

we get

I = V
∞∑

n=−∞

∫
d3p

(2π)3

(
∆(ωn,p)

)2
. (8)

� Using the function (5), Eq. (8) gives

I = V
∞∑

n=−∞

∫
d3p

(2π)3

1

(ω2
n + ω2

p)2
=

V

2π2

∞∑
n=−∞

∫ ∞
0

dp p2

(ω2
n +m2 + p2)2

=
V

25π6T 4

∫ ∞
0

∞∑
n=−∞

dp p2

(n2 + a2)2
, (9)

where the trivial angular integral is taken and a ≡
√
p2+m2

2πT
.

� The formula, which is required to perform the sum in Eq. (9), can be obtained from the
previously used formula

∞∑
n=−∞

1

n2 + a2
=
π

a
cth(πa), (10)

observing that
∞∑

n=−∞

1

(n2 + a2)2
= − d

da2

∞∑
n=−∞

1

n2 + a2
= − d

da2

π

a
cth(πa) = − π

2a

d

da

cth(πa)

a
, (11)

which gives
∞∑

n=−∞

1

(n2 + a2)2
=

π

2a3
cth(πa) +

π2

2a2

1

sinh2(πa)
. (12)

� Using the formula (12), one finds

I =
V

23π2T 2

∫ ∞
0

dp p2

m2 + p2

[
T√

p2 +m2

e
β
2

√
p2+m2

+ e−
β
2

√
p2+m2

e
β
2

√
p2+m2 − e−

β
2

√
p2+m2

+
2(

e
β
2

√
p2+m2 − e−

β
2

√
p2+m2 )2

]
. (13)

� Let us consider, how the integral (13) behaves in the infrared domain when p→ 0. If m is
nonzero and p� m, the integrand (13) is approximated as

p2

m2

[
T

m

e
βm
2 + e−

βm
2

e
βm
2 − e−βm2

+
2(

e
βm
2 − e−βm2

)2

]
(14)

and it vanishes as p→ 0. So, the integral is infrared save for m 6= 0.
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� If m = 0, the integrand is approximated as 4T 2/p2 when p→ 0. So, the integral is infrared
divergent.

� As we will see, one has to resum a whole class of infrared divergent diagrams to tame the
divergence. As a result, one obtains a contribution which, however, is not of the order λ2

but λ3/2.

Diagram b)

� The contribution corresponding to the diagram b) from Fig. 1 is

lnZ
∣∣∣
(2b)

= λ2 1

(4!)2

4!

2!︸ ︷︷ ︸
= 1

48

∫ β

0

d4x

∫ β

0

d4y∆(x− y) ∆(x− y) ∆(y − x) ∆(y − x), (15)

where the combinatorial factor of 4! equals the number of ways to pair each of four fields
φ(x)φ(x)φ(x)φ(x) with four fields φ(y)φ(y)φ(y)φ(y).

� A computation of the diagram b) appears truly difficult. However, we are mostly interested
in one specific question whether the diagram provides a infrared divergent contribution
similarly to the diagram a).

� To study the infrared domain of the contribution (15), it is sufficient to know how the
Green’s function ∆(τ, r) behaves at large distances. The variable τ is limited as 0 ≤ τ ≤ β
and it is never big. So, we consider ∆(τ, r) at large r. One realizes that the limit is given
by the formula (4) with the zero Matsubara frequency. Thus, Eq. (4) gives

∆n=0(r) = T

∫
d3p

(2π)3

eip·r

p2 +m2
=

T

4π

e−mr

r
, (16)

where r ≡ |r|. We stress that the function (16) is independent of τ .

Exercise: Derive the formula (16).

� Substituting the Green’s function (16) into Eq. (15) and keeping in mind that ∆(x− y) =
∆(y − x) in case of a real field, one finds the infrared domain of the contribution (15) as

lnZ
∣∣∣infrared

(2b)
=

λ2

48
β2

∫
d3x

∫
d3y

(
∆n=0(x− y)

)4
=
λ2

48
β2

∫
d3R

∫
d3r
(
∆n=0(r)

)4

=
λ2

48
V β2

∫
d3r
(
∆n=0(r)

)4
=
λ2

48

V T 2

(4π)3

∫ ∞
r0

dr e−4mr

r2
, (17)

where r0 � m−1 and r0 � T−1. One sees that the integral (17) is convergent in the long
distance limit not only form m > 0 but for m = 0 as well.

� Since the contribution (15) is infrared finite it is of order λ2.
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Figure 2: The ring diagram

Resummation

We have found a diagram which is infrared divergent in case of massless fields. The situation
is actually typical for gauge theories like QED or QCD where we deal with massless gauge
bosons. The resummation program, which offers a method to tame the infrared divergences, can
be realized in two ways which look rather different at a first glance. One either resums a class
of infrared divergent diagrams computed in a massless theroy and gets a finite contribution or
one rearranges the perturbative expansion in such a way that a dynamically generated mass is
included into a free propagator. Below we discuss both approaches one by one.

Since the infrared divergences of interest occur for massless field we set m = 0 in this section.

Resummation of ring diagrams

� One realizes that the infrared divergence analogous but even more severe to that of the
diagram a) from Fig. 1 occurs for a whole class of diagrams which are shown in Fig. 2.

� The ring diagram of order λN with N > 2 gives the following contribution to lnZ

lnZ
∣∣∣
(N ring)

=
(
− λ

4!

)N CN
N !

∫ β

0

d4x1

∫ β

0

d4x2· · ·
∫ β

0

d4xN

×∆(0) ∆(x1 − x2) ∆(0)∆(x2 − x3) ∆(0) . . .∆(xN − x1), (18)

where CN is the combinatoric factor computed as follows. There are 3! ways to choose a
pair of fields out of four fields in each vertex. A factor 2 gives number of possible pairings
of the unpaired fields in two neighboring vertices. There are 1

2
(N − 1)! ways to order the

vertices along the ring. Thus, one finds CN = 1
2
(N − 1)!(2 · 3!)N .

� Going to the momentum space, the formula (18) becomes

lnZ
∣∣∣
(N ring)

=
1

2

(
− λ

4!

)N (2 · 3!)N

N

(
∆(x = 0)

)N
TNβNV

∞∑
n=−∞

∫
d3p

(2π)3

(
∆(ωn,p)

)N
, (19)

where N − 1 four-dimensional integrals, which are trivial due to the delta functions, are
taken.

� Since ∆(x = 0) = T 2/12 (with appropriately renormalized ∆(x)), Eq. (20) is rewritten as

lnZ
∣∣∣
(N ring)

=
1

2
V

∞∑
n=−∞

∫
d3p

(2π)3

(
Π ∆(ωn,p)

)N
N

, (20)
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Figure 3: The first order contribution to the self energy

where

Π ≡ λ
T 2

24
. (21)

� Actually, Π is the first order self energy corresponding to the diagram shown in Fig. 3. The
self energy is renormalized that is the vacuum contribution is subtracted.

� Keeping in mind the Taylor expansion of the logarithm, which is

ln(1 + x) = x− x2

2
+
x3

3
+ · · · =

∞∑
N=1

(−x)N

N
, (22)

the ring contributions (20) can be summed from N = 2 to N =∞ and the result is

lnZ
∣∣∣
Σ ring

=
1

2
V

∞∑
n=−∞

∫
d3p

(2π)3

[
ln
(

1 + Π ∆(ωn,p)
)
− Π ∆(ωn,p)

]
. (23)

� Using the explicit form of the temperature Green’s function (5) and taking the trivial
angular integral, the formula (23) becomes

lnZ
∣∣∣
Σ ring

=
V

4π2

∞∑
n=−∞

∫ ∞
0

dp p2
[

ln
(

1 +
Π

(2πTn)2 + p2

)
− Π

(2πTn)2 + p2

]
. (24)

� We observe that the integral (24) is regular in both infrared and ultraviolet limits for any n
including n = 0. In the infrared limit the two terms in Eq. (24) are regular independently
from each other but in the ultraviolet limit the two terms partially cancel each other to
decay as p−2.

� We simplify the integral (24) performing the partial integration as

lnZ
∣∣∣
Σ ring

=
V

12π2

∞∑
n=−∞

∫ ∞
0

dp
dp3

dp

[
ln
(

1 +
Π

(2πTn)2 + p2

)
− Π

(2πTn)2 + p2

]

=
V

6π2
Π2

∞∑
n=−∞

∫ ∞
0

dp p4(
(2πTn)2 + p2

)2(
(2πTn)2 + p2 + Π

) . (25)

� Since (2πTn)2 � Π for n 6= 0, Π can be ignored in the integrand (25) in such a case.
Therefore, the sum of ring diagrams with the term n = 0 excluded is of order λ2 as Π is of
order λ.

� The situation is different when n = 0, which corresponds to the static zero mode, because
Π cannot be ignored in the integrand (25). Computing the integral (25) for n = 0, one finds

lnZ
∣∣∣n=0

Σ ring
=

V

6π2
Π2

∫ ∞
0

dp

p2 + Π
=

V

6π2
Π3/2

∫ ∞
0

dx

1 + x2︸ ︷︷ ︸
=π

2

=
V

12π
Π3/2. (26)
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� Using the formula (21), one finally obtains

lnZ
∣∣∣n=0

Σ ring
=
( λ

4!

)3/2 V T 3

12π
. (27)

� The zero mode provides the contribution of the order λ3/2 in contrast to the nonzero modes
which contribute at the order λ2.

� An appearance of the contribution with fractional power of λ shows that lnZ is a non-
analytical function of λ.

� Collecting the first three terms of the prerturbative expansion of lnZ, we have

lnZ = lnZ0 + lnZ
∣∣∣
(1)

+ lnZ
∣∣∣n=0

Σ ring
+ . . .

=
π2V T 3

90
− λ V T

3

1152
+
( λ

4!

)3/2 V T 3

12π
+ . . .

=
π2V T 3

90

[
1− 15

8

( λ

4!π2

)
+

15

2

( λ

4!π2

)3/2

+ . . .
]
. (28)

Resummation through the effective mass

� The second method of resumation relies on using in the preturbative expansion not the free
Green’s function but the function where the lowest order correction is resummed to infinite
order. As we remember, the function is of the form

∆(ωn,p) =
1

ω2
n + p2 + Π(1)(p)

. (29)

� Since the self energy Π(1)(p), which is given by Eq. (21), is momentum independent, it is
natural to call it the effective mass and denote it as meff . So, the resumed Green’s function
equals

∆(ωn,p) =
1

ω2
n + p2 +m2

eff

(30)

and

m2
eff ≡

λ

24
T 2. (31)

� Using the resumed propagator (30) instead of the free one, one has to reorganize the per-
turbative expansion (because meff depends on λ). To do it systematically, we write the
Lagrangian density of the massless field as

L =
1

2
∂µφ(x)∂µφ(x)− 1

2
m2

effφ
2(x)︸ ︷︷ ︸

=L0

− λ
4!
φ4(x) +

1

2
m2

effφ
2(x)︸ ︷︷ ︸

=LI

. (32)

The term with the effective mass enters the free Lagrangian L0 and it is canceled by the
same term of opposite sign in the interaction Lagrangian LI . So, the Lagrangian is actually
unchanged.
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Figure 4: The first order contributions to lnZ in reorganized perturbative expansion

The first order

� The free partition must be now computed not for the massless but for massive field. As we
remember, the partition function of non-interacting bosons of mass meff is

lnZ0 = − V

2π2

∫ ∞
0

dk k2 ln(1− e−β
√
m2

eff+k2
) =

V

6π2T

∫ ∞
0

dk k4√
m2

eff + k2

1

eβ
√
m2

eff+k2 − 1
. (33)

� There is no closed analytical formula of the partition function (33) but keeping in mind that
meff � T we can get an approximate result. The first two terms of the Taylor expansion
around meff = 0 are

lnZ0 = lnZ0

∣∣∣
m2

eff=0
+
∂ lnZ0

∂m2
eff

∣∣∣
m2

eff=0
m2

eff =
π2V T 3

90
− V Tm2

eff

24
. (34)

So, the free partition function of bosons produces the first order contribution because
m2

eff ∼ λ.

� It is interesting to note that one cannot get the next term of the expansion (34) computing
the second derivative of lnZ0 because the derivative produces a badly divergent integral.
This signals that lnZ0 is not an analytic function of meff . Consequently, the Taylor expan-
sion (34) is not really reliable. However, the result (34) is correct. We will return to the
issue.

� There are two first order contributions to lnZ of the reorganized perturbative expansion
which correspond to the diagrams shown in Fig. 4. The right diagram comes from the extra
mass term of the modified interaction Lagrangian and the cross in the diagram represents
m2

eff .

� The diagram a), which has been already discussed, should be computed not with the free
Green’s function but with the resummed one (30). However, the contribution is, as we
remember, infrared save in the massless limit and consequently the effect of effective mass
is of higher order (actually of order λ2). Therefore, we can use the already obtained result
which is

lnZ
∣∣∣
(1a)

= − λ
4!

3

∫ β

0

d4x
(
∆(x = 0)

)2
= −λ

8
βV
(
∆(x = 0)

)2
= −λ V T

3

1152
. (35)

� As already mentioned, the diagram b) in Fig. 4 is due to the extra mass term in the
interaction Lagrangian (32). Since the cross represents m2

eff , the contribution equals

lnZ
∣∣∣
(1b)

=
m2

eff

2

∫ β

0

d4x∆(x = 0) =
V Tm2

eff

24
. (36)

� One observes that the term (36) exactly cancels the contribution to lnZ0 given by Eq. (34)
which is due to the effective mass. So, we have reproduced the known first order result
with the reorganized perturbative expansion. Now, we are ready to deal with higher order
contributions.
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The next order

� The first contribution of order λ3/2 comes from the free partition function and it is

lnZ0

∣∣∣
(3/2)

=
V m3

eff

12π
=
( λ

4!

)3/2 V T 3

12π
. (37)

� Somewhat unexpectedly it is truly difficult to obtain the expansion of lnZ0 of massive bosons
around vanishing mass. The derivation of the term (37) can be found in the Appendix C
of the classical paper by L. Dolan & R. Jackiw, Phys. Rev. D 9, 3320 (1974). The idea of
the derivation is to start not with lnZ0 given by Eq. (33) but the modified formula which
includes an extra factor k−ε. The factor guarantees that the higher order derivatives of lnZ0

with respect to m2 are convergent integrals. In the final step one takes the limit ε→ 0.

� We note that the contribution (37) exactly equals the sum of ring diagrams (27). So, one
expects that the remaining contributions of order λ3/2 cancel each other.

� The second contribution of order λ3/2 appears as a subleading part of the first order dia-
gram a) shown in Fig. 4 when computed with the resummed propagator (30). The diagram
provides

lnZ
∣∣∣
(1a)

= − λ
4!

3

∫ β

0

d4x
(
∆(x = 0)

)2
= −λ

8
βV
(
∆(x = 0)

)2
, (38)

where

∆(x = 0) = T
∞∑

n=−∞

∫
d3p

(2π)3

1

ω2
n + p2 +m2

eff

. (39)

� The subleading contribution of interest is due to zero Matsubara frequency. For this reason
we express the propagator ∆(x = 0) as

∆(x = 0) = T
∞∑

n=−∞, n6=0

∫
d3p

(2π)3

1

ω2
n + p2 +m2

eff

+ T

∫
d3p

(2π)3

1

p2 +m2
eff

. (40)

Since meff � ωn if n 6= 0, we can neglect meff in the first term of Eq. (40) which we rewrite
as follows

∆(x = 0) = T
∞∑

n=−∞

∫
d3p

(2π)3

1

ω2
n + p2

− T
∫

d3p

(2π)3

1

p2
+ T

∫
d3p

(2π)3

1

p2 +m2
eff

= T
∞∑

n=−∞

∫
d3p

(2π)3

1

ω2
n + p2

+ T

∫
d3p

(2π)3

[ 1

p2 +m2
eff

− 1

p2

]
. (41)

The first term has been already computed and it equals T 2

12
while the second term is com-

puted as

T

2π2

∫ ∞
0

dp p2
[ 1

p2 +m2
eff

− 1

p2

]
= −m

2
effT

2π2

∫ ∞
0

dp

p2 +m2
eff

= −meffT

2π2

∫ ∞
0

dx

x2 + 1︸ ︷︷ ︸
=π

2

= −meffT

4π
.

One finally obtains

∆(x = 0) =
T 2

12
− meffT

4π
. (42)
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Figure 5: The second order contributions to lnZ in reorganized perturbative expansion

� Substituting the result (42) into Eq. (38), we get

lnZ
∣∣∣
(1a)

= −λ
8
βV
(T 2

12
− meffT

4π

)2

, (43)

and the subleading contribution of order λ3/2 equals

lnZ
∣∣∣sub

(1a)
=
λ

8

V meffT
3

24π
=
( λ

4!

)3/2 V T 3

8π
(44)

� The third contribution of order λ3/2 is a subleading part of the first order diagram b) shown
in Fig. 4 computed with the resummed propagator (30). The diagram, which is due to the
extra mass term in the interaction Lagrangian (32), provides

lnZ
∣∣∣
(1b)

=
m2

eff

2

∫ β

0

d4x∆(x = 0) =
m2

eff

2
βV ∆(x = 0). (45)

Using the formula (42), one immediately finds the subleading contribution as

lnZ
∣∣∣sub

(1b)
= −V m

3
eff

8π
= −

( λ
4!

)3/2 V T 3

8π
. (46)

� One sees that the contributions (44) and (46) cancel each other exactly.

� There are four second order contributions to lnZ of the reorganized perturbative expansion
which correspond to the diagrams shown in Fig. 5.

� The fourth contribution of order λ3/2 is provided by the second order diagram a) from Fig. 1
or Fig. 5 when computed with the resummed Green’s function (30). So, we return to Eq. (8)
where we substitute the propagator (30). Thus, we get

I =
V

2π2

∞∑
n=−∞

∫ ∞
0

dp p2

(ω2
n + p2 +m2

eff)2
. (47)

� Since the contribution of interest is due to the zero Matsubara frequency, Eq. (47) gives

In=0 =
V

2π2

∫ ∞
0

dp p2

(m2
eff + p2)2

=
V

2π2meff

∫ ∞
0

dx x2

(1 + x2)2︸ ︷︷ ︸
=π

4

=
V

8πmeff

. (48)

� Plugging the result (48) into Eq. (2), one obtains

lnZ
∣∣∣
(2a)

=
λ2

16

T 4

144

V

8πmeff

=
( λ

4!

)3/2 V T 3

32π
. (49)
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� As we remember, the diagram b) in Fig. 1 or Fig. 5 is infrared save when computed with
free massless propagator. So, it does not produce the contribution of order λ3/2

� The fifth contribution of order λ3/2 corresponds to the diagram c) in Fig. 5. It equals

lnZ
∣∣∣
(2c)

= −λm
2
eff

2 · 4!
3 · 4

∫ β

0

d4x

∫ β

0

d4y∆(x = 0) ∆(x− y) ∆(y − x)

= −λm
2
eff

4
∆(x = 0) I, (50)

where the quantity I is defined by Eq. (3) and it is given by the formula (48). Therefore,

lnZ
∣∣∣
(2c)

= −λmeffV T
2

384π
= −

( λ
4!

)3/2 V T 3

16π
. (51)

� The sixth contribution of order λ3/2 corresponds to the diagram d) in Fig. 5. It equals

lnZ
∣∣∣
(2d)

=
m4

eff

4

∫ β

0

d4x

∫ β

0

d4y∆(x− y) ∆(y − x)

=
m4

eff

4
I =

m3
effV

32π
=
( λ

4!

)3/2 V T 3

32π
. (52)

� One sees that the contributions (49, 51) and (52) cancel each other exactly. So, we conclude
that with the reorganized perturbative expansion we have reproduced the results given by
Eq. (28).

� An advantage of the reorganized perturbative expansion becomes evident when one goes to
higher orders.


