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Renormalization in Thermal QFT
In this Lecture, we return to the discussion of properties of the equilibrium boson gas that

we conducted in Lectures III and IV, using the operator approach to the Matsubara formalism.
Here we will apply the generating functional introduced in Lectures X and XI to derive higher
order contributions to the free energy. We will deal with ultraviolet divergences, which require
a renormalization. At the beginning, however, we discuss again the perturbative expansion of
the partition function and we show how to get rid of disconnected diagrams.

The system under study is, as previously, described by the Lagrangian density

L =
1

2
∂µφ(x)∂µφ(x)− 1

2
m2φ2(x)− λ

4!
φ4(x). (1)

Perturbative expansion of partition function

� As we remember, the path-integral representation of the partition function is

Z =

∫
Dφ(x) exp

[
SE0 + SEI

]
, (2)

where

SE0 [φ] =

∫ β

0

d4xLE0 (x) = −1

2

∫ β

0

d4x
[(∂φ(x)

∂τ

)2

+
(
∇φ(x)

)2
+m2φ2(x)

]
, (3)

SEI [φ] =

∫ β

0

d4xLEI (x) = − λ
4!

∫ β

0

d4xφ4(x), (4)

with ∫ β

0

d4x . . . ≡
∫ β

0

dτ

∫
d3x . . . (5)

� Writing down the interaction action as

SEI = λsI , (6)

where the coupling constant λ is singled out, the perturbative expansion of the partition
function can be expressed in the following way

Z = Z0

〈
eλsI

〉
= Z0

〈
1 + λsI +

λ2

2!
s2
I +

λ3

3!
s3
I . . .

〉
= Z0

(
1 + λ〈sI〉+

λ2

2!
〈s2
I〉+

λ3

3!
〈s3
I〉 . . .

)
. (7)

where

〈. . . 〉 ≡
∫
Dφ(x) . . . eS

E
0∫

Dφ(x) eS
E
0

=
1

Z0

∫
Dφ(x) . . . eS

E
0 . (8)

� The first and the second order contributions to Z read

〈sI〉 =
1

4!

∫ β

0

d4x 〈φ4(x)〉, (9)

〈s2
I〉 =

1

4!4!

∫ β

0

d4x

∫ β

0

d4y 〈φ4(x)φ4(y)〉. (10)
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Figure 1: The diagrams representing the 1st and 2nd order contributions to the partition function (7)

� Using the free generating functional

W0[J ] = exp
[
− 1

2

∫ β

0

d4x1

∫ β

0

d4x2 J(x1)∆0(x1 − x2)J(x2)
]
, (11)

which is derived in Lecture XI, the expectation value 〈φ4(x)〉 is found as

〈φ4(x)〉 =
δ4

δJ4(x)
W0[J ]

∣∣∣∣
J=0

= 3
(
∆0(x− x)

)2
= 3〈φ2(x)〉2 = 3

(
∆0(0)

)2
. (12)

To compute the derivative one should realize that the only term from the expansion of the
exponential function of generating functional (11) which contributes 〈φ4(x)〉 to is that one
with four sources J . The terms with smaller number of Js vanish when the derivatives are
computed. Those with bigger number of Js vanish when we set J = 0.

� Similarly, one obtains

〈φ4(x)φ4(y)〉 =
δ4

δJ4(x)

δ4

δJ4(y)
W0[J ]

∣∣∣∣
J=0

= 9
(
∆0(0)

)2
+ 36

(
∆0(0)

)2(
∆0(x− y)

)2
+ 12

(
∆0(x− y)

)4
. (13)

� The diagrams representing the first and second order contributions to the partition function
(7) are shown in Fig. 1. The diagram a) corresponds to 〈φ4(x)〉 given by the formula (12)
while the diagrams b), c) and d) represent, respectively, the three terms in Eq. (13).

� We see that the diagram b) from Fig. 1 splits into two disconnected parts. This is so-called
the disconnected diagram. Before we compute the first and second order contributions to
the partition function, we are going to discuss how to eliminate the disconnected diagrams
systematically.

Getting rid of disconnected diagrams

� Properties of a statistical system are encoded in its partition function. However, it appears
more appropriate to compute from the beginning not the partition function Z but lnZ
which is directly proportional to the free energy F as F = −T lnZ.

� Keeping in mind that for |x| � 1 the logarithm is expanded as

ln(1 + x) = x− 1

2
x2 +

1

3
x3 + . . . , (14)

the perturbative expansion of Z given by Eq. (7) gives the following expansion of lnZ

lnZ = lnZ0 + ln
(

1 + λ〈sI〉+
λ2

2!
〈s2
I〉+

λ3

3!
〈s3
I〉 . . .

)
= lnZ0 + λ〈sI〉+

λ2

2!

(
〈s2
I〉 − 〈sI〉2

)
+
λ3

3!

(
〈s3
I〉 − 3〈sI〉〈s2

I〉+ 2〈sI〉3
)
. . . . (15)
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� The expression
(
〈s2
I〉 − 〈sI〉2

)
corresponds to the sum of the diagrams b), c) and d) from

Fig. 1 minus the square of the diagram a). Since the square of the diagram a) gives the
diagram b), the expression

(
〈s2
I〉 − 〈sI〉2

)
corresponds to the sum of the diagrams c) and

d). So, the disconnected diagram b) is eliminated.

� There is an analogous situation with the expression
(
〈s3
I〉 − 3〈sI〉〈s2

I〉+ 2〈sI〉3
)

which gives
the sum of connected third order contributions to lnZ.

� So, we conclude, the perturbative expansion of lnZ does not include the disconnected
diagrams which contribute to Z.

First order contribution

� The first order correction to the partition function was already discussed in Lecture IV. We
return to the issue performing calculation somewhat differently.

� The first order contribution corresponds to the diagram a) from Fig. 1 and it is given as

lnZ
∣∣∣
(1)

= − λ
4!

3

∫ β

0

d4x
(
∆0(x = 0)

)2
= −λ

8
βV
(
∆0(x = 0)

)2
, (16)

where the combinatorial factor 3 corresponds to a number of ways in which the four fields
can be grouped in pairs.

� In Lecture IV we computed ∆0(x = 0), using the functions ∆>
0 (x), ∆<

0 (x). In this way we
avoided a summation over the Matsubara frequencies. Since the summation is unavoidable
in computation of higher order contributions, it is instructive to compute the first order
contribution in this way as well.

� Since the free temperature Green’s function equals

∆0(τ,x) = T
∞∑

n=−∞

∫
d3p

(2π)3
e−i(ωnτ−p·x)∆0(ωn,p), (17)

where the Matsubara frequencies are

ωn ≡ 2πT n, (18)

and

∆0(ωn,p) =
1

ω2
n + ω2

p

, (19)

the function of interest equals

∆0(x = 0) = T

∞∑
n=−∞

∫
d3p

(2π)3

1

ω2
n + ω2

p

. (20)

� Using the formula (see https://en.wikipedia.org/wiki/List of mathematical series)

∞∑
n=0

1

n2 + a2
=

π

2a
cth(πa) +

1

2a2
, (21)
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which can be rewritten as
∞∑

n=−∞

1

n2 + a2
=
π

a
cth(πa), (22)

the sum over Matsubara frequencies in Eq. (20) is performed and the result is

∆0(x = 0) =

∫
d3p

(2π)32ωp

cth
(ωp

2T

)
=

∫
d3p

(2π)32ωp

eβωp + 1

eβωp − 1

=
1

4π2

∫ ∞
0

dp p2√
m2 + p2

1 + e−β
√
m2+p2

1− e−β
√
m2+p2

, (23)

where the trivial angular integral is taken in the last step.

� One checks that the integrand in Eq. (23) is finite in the infrared limit when p → 0. This
is obvious in case of m > 0. It is less obvious when m = 0. However, one checks that for
p→ 0 the integrand is indeed finite. Specifically,

lim
p→0

p
1 + e−βp

1− e−βp
= 2T. (24)

So, we conclude that the integral (23) is infrared safe.

� The situation is different in the ultraviolet limit when p→∞. Since for p� m and p� T
the integrand linearly grows with p, the integral in Eq. (23) is quadratically divergent.

� One observes that the ultraviolet divergence is present in the zero temperature limit of
∆0(x = 0) when β →∞. So, we split the integral into the vacuum and medium parts as

∆0(x = 0) =
1

4π2

∫ ∞
0

dp p2√
m2 + p2

1 + e−β
√
m2+p2

1− e−β
√
m2+p2

= ∆vac
0 (x = 0) + ∆med

0 (x = 0), (25)

where

∆vac
0 (x = 0) ≡ 1

4π2

∫ ∞
0

dp p2√
m2 + p2

, (26)

∆med
0 (x = 0) ≡ 1

2π2

∫ ∞
0

dp p2√
m2 + p2

1

eβ
√
m2+p2 − 1

. (27)

We see that the medium part is regular in the ultraviolet limit while the vacuum contribution
quadratically diverges. So, this is the ultraviolet divergence of vacuum QFT.

� When we first encountered the divergence in Lecture IV, we simply eliminated ∆vac(x = 0),
arguing that the vacuum contribution should not influence thermodynamic characteristics
of the system. However, the procedure is not fully satisfactory, as the divergent integral
produces a temperature dependent contribution to the partition function. Indeed, the first
order contribution to the partition function (16) equals

lnZ
∣∣∣
(1)

= −λ
8
βV
(

∆vac
0 (x = 0) + ∆med

0 (x = 0)
)2

. (28)

� We see that the divergent function ∆vac
0 (x = 0) influences the system’s thermodynamics.

So, the problem of ultraviolet divergences requires a more careful analysis.
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Renormalization

� This is generally true with statistical QFT that ultraviolet divergences, in contrast to in-
frared ones, are caused by the vacuum sector of the theory. The physical reason is the
following. The ultraviolet divergences occur due to momenta p which are much bigger than
the temperature T or equivalently, at distances x much smaller that T−1. In a relativistic
gas, where T is much bigger than masses of gas constituents, the particle density ρ is of
order T 3. (It is sufficient here to refer to the dimensional argument.) Consequently, the
inter-particle spacing is of order ρ−1/3 ∼ T−1. So, ultraviolet divergences occur at distances
x much smaller than the inter-particle spacing. Therefore, a medium plays no role here and
a renormalization procedure to tame the divergences is exactly as in vacuum QFT. So, we
discuss the procedure only briefly.

Vacuum sector of thermal field theory

� It is important to realize that the zero-temperature sector of thermal field theory or, equiv-
alently, the zero-temperature limit of the theory, which is plagued with ultraviolet diver-
gences, corresponds to the Euclidean formulation of vacuum QFT that is the Minkowski
space is replaced by the Euclidean one with the diagonal metric tensor (−,−,−,−) not
(+,−,−,−).

� Since the spacing of Matsubara frequencies goes to zero at vanishing temperature, the zeroth
component of four-momentum, which is discrete and represented by Matsubara frequencies
at a finite temperature, becomes a continuous variable usually denoted as p4 at T = 0 and
it equals p4 = ip0 where p0 is the zeroth component of four-momentum in the Minkowski
space. In the zero-temperature limit the sum over Matsubara frequencies is replaced by the
integral over p4 as

T
∞∑

n=−∞

. . . −→
∫ ∞
−∞

dp4

2π
. . . (29)

� The zero-temperature or vacuum free Green’s function in momentum space is

∆vac
0 (p) =

1

p2
4 + p4 +m4

, (30)

where p = (p4,p).

� At T = 0 the integral over τ from 0 to β is replaced by the integral from −∞ to ∞. Since
the integrand is periodic in τ with the period β, the integral from 0 to β is first replaced
by the integral from −β/2 to β/2 and then the limit β →∞ is taken. So, at the vanishing
temperature the following replacement is applied∫ β

0

d4x . . . ≡
∫ β

0

dτ

∫
d3x . . . −→

∫
d4x . . . ≡

∫ ∞
−∞

dτ

∫
d3x . . . (31)
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The idea of renormalization

� The procedure of renormalization consists in absorbing infinite expressions into the physical
or measurable parameters of a given theory. In case of the scalar self-interacting field these
are the coupling constant and mass. However, one introduces an important distinction.
The parameters λ and m, which enter the Lagrangian density, are interpreted as bare
parameters, and further on these parameters are denoted as λB and mB. The physical
or renormalized parameters are those into which divergent integrals are absorbed. The
procedure is performed order by order in perturbative expansion and the bare parameters
are expressed by the renormalized ones as

m2
B = m2 + λc(1) + λ2c(2) + . . .︸ ︷︷ ︸

≡δm2

, (32)

λB = λ+ λ2d(2) + λ3d(3) + . . .︸ ︷︷ ︸
≡δλ

, (33)

where the coefficients c(n), d(n) include the divergent integrals.

� We note that a renormalization of field amplitudes is required at higher orders of pertur-
bative expansion. However, we not discuss it.

� The renormalized mass and coupling constant are found as m2 = m2
B−δm2 and λ = λB−δλ.

So, the physical parameters m and λ are expressed through the quantities m2
B, δm

2 and
λB, δλ which are formally infinite. However, we can live with it, because these quantities
are of purely theoretical significance.

� In order to perform the renormalization procedure, a renormalization scheme should be
chosen. The scheme determines a method to define physical quantities, in our case the
mass and coupling constant. In our further considerations, we will use the most traditional
scheme in which the mass and coupling constant are defined at a vanishing momentum.
However, it should be stressed that other choices are often applied.

� Finally, we note that the program of renormalization can be successfully realized only for
a class of theories called renormalizable. The class includes the theory of self-interacting
scalar field that we consider here. In renormalizable theories, a finite number of physical
quantities is sufficient to absorb divergences in arbitrary high order of the perturbation
expansion.

� In the first order of perturbative expansion the divergences should be fully absorbed in the
renormalized mass as λB = λ. So, we have to define the particle’s mass.

� In vacuum QFT the particle’s mass is defined as an energy corresponding to a pole of
particle’s propagator at vanishing momentum. In the imaginary time formalism the free
propagator (30) has no pole at real energies. So, the definition of mass should be modified.
However, we will not formalize the definition, but instead, we will remember that going
from the Euclidean to Minkowski space-time the mass corresponds to a pole of the particle’s
propagator at vanishing momentum.

� To systematically perform the procedure of subtraction of divergent integrals one rewrites
the Lagrangian density (1) as

L =
1

2
∂µφ(x)∂µφ(x)− 1

2
m2φ2(x)− λ

4!
φ4(x)− 1

2
δm2φ2(x)− δλ

4!
φ4(x), (34)
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Figure 2: The first order correction to the Green’s function

where the two counterterms are included. It should be stressed that λ and m are now
physical parameters.

The first order mass counterterm

� We are going to derive here the first order mass counterterm δm2. As we already noted,
δλ = 0 at the first order.

� Since the physical mass is inferred from the propagator, we compute it at the first order of
perturbative expansion. The first order contribution, which is represented by the diagram
shown in Fig. 2, equals

∆vac
(1) (x− y) = − λ

4!
12

∫
d4z∆vac

0 (x− z) ∆vac
0 (z − z) ∆vac

0 (z − y)

= −λ
2

∆vac
0 (z = 0)

∫
d4z∆vac

0 (x− z) ∆vac
0 (z − y), (35)

where the combinatorial factor of 12 reflects the fact that there are 4 ways to pair the field
φ(x) with the four fields φ(z)φ(z)φ(z)φ(z) and 3 ways to pair the φ(y) with the remaining
three fields φ(z)φ(z)φ(z). So, the combinatorial factor is 4 · 3 = 12.

� Going to the momentum space, Eq. (35) becomes

∆vac
(1) (p) = −λ

2
∆vac

0 (z = 0)
(
∆vac

0 (p)
)2
, (36)

� Treating the mass counterterm in the Lagrangian density (34) as the interaction term, one
finds the additional first order contribution

δ∆vac
(1) (x− y) = −1

2
2 δm2

∫
d4z∆vac

0 (x− z) ∆vac
0 (z − y), (37)

which in the momentum space reads

δ∆vac
(1) (p) = −δm2

(
∆vac

0 (p)
)2
. (38)

� The complete first order correction to the Green’s function is

∆vac
(1) (p) = −

(λ
2

∆vac(z = 0) + δm2
)(

∆vac
0 (p)

)2
. (39)

� Introducing the self energy Πvac, which, as we remember, is defined through the Dyson-
Schwinger equation as

∆vac(p) = ∆vac
0 (p)−∆vac

0 (p)Πvac(p) ∆vac(p), (40)
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Eq. (39) is rewritten as

∆vac
(1) (p) = −Πvac

(1)

(
∆vac

0 (p)
)2
, (41)

where

Πvac
(1) =

λ

2
∆vac(z = 0) + δm2. (42)

As we see, the self energy (42) is independent of momentum.

� Resumming the first order contribution, as we already did several times, one gets the
resummed propagator

∆vac(p) =
1

p2
4 + p2 +m2 + Πvac

(1)

. (43)

� Since m is the physical mass, δm2 should be chosen in such a way that Πvac
(1) = 0. This

means

δm2 = −λ
2

∆vac
0 (z = 0). (44)

� Let us compute ∆vac
0 (z = 0), which is

∆vac
0 (z = 0) =

∫
d4pE
(2π)4

1

p2
E +m2

, (45)

where pE ≡ (p4,p) and p2
E = p2

4 + p2.

� The integral in Eq. (45) is most easily computed in four-dimensional spherical coordinates
as

∆vac
0 (z = 0) =

∫
d3Ω

(2π)4

∫ Λ

0

dp p3

p2 +m2
, (46)

where p ≡
√
p2
E =

√
p2

4 + p2 and the upper momentum cut-off Λ offers the most straight-
forward method to regularize the integral.

� The angular integral is found as ∫
dn−1Ω =

2πn/2

Γ(n/2)
, (47)

which equals 2π2 for n = 4.

Exercise: Derive the integral formula (47).

� Since Λ� m, we can ignore m in the integrand (46) and we get∫ Λ

0

dp p3

p2 +m2
=

1

2
Λ2. (48)

� Substituting the results (47, 48) in Eq. (46), one finds

∆vac
0 (z = 0) =

Λ2

16π2
, (49)

and using Eq. (44), we finally obtain

δm2 = − λΛ2

32π2
. (50)
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Digression
Let us compute ∆vac

0 (z = 0) starting with the formula (26). Cutting off the integral with Λ′ and assuming that Λ′ � m,
one finds

∆vac
0 (x = 0) =

1

4π2

∫ Λ′

0

dp p2√
m2 + p2

=
1

4π2

∫ Λ′

0

dp p =
Λ′2

8π2
, (51)

which differs from the result (49) for Λ′ = Λ. At first glance the difference is surprising but it can be easily understood:
the integrals (26) and (45) are simply different. However, one can get the integral (26) performing first the integration
over p4 in Eq. (45). Indeed, one finds

∆vac
0 (z = 0) =

∫
d3p

(2π)4

∫ ∞
−∞

dp4

p2
4 + p2 +m2

=

∫
d3p

(2π)4

1√
m2 + p2

arctg
p4√

m2 + p2

∣∣∣∣∞
−∞

= π

∫
d3p

(2π)4

1√
m2 + p2

=
1

4π2

∫ ∞
0

dp p2√
m2 + p2

. (52)

The renormalized first order contribution to lnZ

� Now, we are going to show that the mass counterterm in the Lagrangian density (34) with
δm2 given by Eq. (50), will make finite the first order contribution to lnZ given by Eq. (16)
or (28).

� Due to the mass counterterm in the Lagrangian, we have an additional first order contri-
bution to lnZ

δ lnZ
∣∣∣
(1)

= −1

2
δm2

∫ β

0

d4x∆0(x = 0) = −1

2
δm2 βV∆0(x = 0),

= −1

2
δm2 βV

(
∆vac

0 (x = 0) + ∆med
0 (x = 0)

)
. (53)

� Consequently, the complete first order contribution to lnZ equals

lnZ
∣∣∣
(1)

= −λ
8
βV
(

∆vac
0 (x = 0) + ∆med

0 (x = 0)
)2

− 1

2
δm2 βV

(
∆vac

0 (x = 0) + ∆med
0 (x = 0)

)
, (54)

which, using Eq. (44), can be rewritten as

1

λβV
lnZ

∣∣∣
(1)

= −1

8

(
∆vac

0 (x = 0) + ∆med
0 (x = 0)

)2

+
1

4
∆vac

0 (x = 0)
(

∆vac
0 (x = 0) + ∆med

0 (x = 0)
)

= −1

8

(
∆med

0 (x = 0)
)2

+
1

8

(
∆vac

0 (x = 0)
)2

. (55)

One observes that the mass counterterm cancels the disturbing contribution to lnZ which
is proportional to ∆vac

0 (x = 0) ∆med
0 (x = 0).

� Assuming that T � m, one computes ∆med
0 (x = 0) given by Eq. (27) as

∆med
0 (x = 0) =

1

2π2

∫ ∞
0

dp p

eβp − 1
=

T

2π2

∫ ∞
0

dx x

ex − 1︸ ︷︷ ︸
=π2

6

=
T 2

12
. (56)
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� Substituting the results (49, 56) into Eq. (55), one finds

1

λβV
lnZ

∣∣∣
(1)

= − T 4

1152
+

Λ4

2048π4
, (57)

where the divergent term is still present.

� To understand a role of the divergent term, let us consider the partition function. Keeping
in mind that lnZ0 = (π2V T 3)/90, we have

lnZ = lnZ0 + lnZ
∣∣∣
(1)

=
π2V T 3

90

[
1− 5λ

64π2

]
+

λV Λ4

2048π4T
. (58)

� With the partition function (58), the system’s energy U , free energy F = U − TS and
pressure p, which are defined as

U ≡ − d

dβ
lnZ(T ), F ≡ −T lnZ(T ), p = −

(∂F
∂V

)
T
, (59)

are

U =
π2V T 4

30

[
1− 5λ

64π2

]
− λV Λ4

2048π4
, (60)

F = −π
2V T 4

90

[
1− 5λ

64π2

]
− λV Λ4

2048π4
, (61)

p =
π2T 4

90

[
1− 5λ

64π2

]
. (62)

� One observes that the divergent term does not enter the pressure but it shifts the en-
ergy and free energy by a constant value which corresponds to the vacuum energy density.
As long as gravity is not considered, only energy differences are measurable and thus the
divergent term can be safely ignored. If we included gravity, the vacuum energy, we encoun-
tered, would be absorbed in the renormalized cosmological constant which is interpreted as
the vacuum energy density.

� We also note without the cancellation of the divergent terms in Eq. (55), we would have a
contribution to lnZ which is proportional to λV TΛ2. Such a term provides the temperature
dependent contributions to the system’s energy, free energy and pressure.

� We conclude the lecture by saying that the renormalization of thermal field theory is per-
formed as in the vacuum counterpart theory and the renormalization does not influence
thermodynamic characteristics obtained by means of perturbative expansion. To get rid
of ultraviolet contribution it is usually sufficient to simply subtract vacuum contributions.
The theory parameters – masses and coupling coupling constants – are then treated as
renormalized. We will follow this pragmatic strategy in the subsequent lectures.


