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Functional Methods in Vacuum QFT
In the previous lectures we have been using the operator formalism of quantum field theory.

Now, we are going to introduce the functional methods in statistical QFT which allow one to
derive a perturbative expansion of Green’s functions in an elegant and economical way. However,
we start with a reminder of the functional methods in vacuum QFT

Generating functional

A key object of the functional methods of QFT is the generating functional which is used to
obtain various Green’s function and their perturbative expansion. The functional offers a rather
simple way to prove the Wick theorem.

Preliminaries

� We consider, as previously, the real scalar field φ, starting with the field interacting only
with an external source J . The self-interacting field will be discussed further on. The
Lagrangian density, which is quadratic in the field, is

L = L0 + J(x)φ(x) =
1

2
∂µφ(x)∂µφ(x)− 1

2
m2φ2(x) + J(x)φ(x), (1)

where the Lagrangian density of free field reads

L0(x) ≡ 1

2
∂µφ(x)∂µφ(x)− 1

2
m2φ2(x), (2)

and m is the mass. The equation of motion is

[∂µ∂
µ +m2]φ(x) = J(x). (3)

� The action of free field equals

S0[φ] =
1

2

∫
d4xL0 =

∫
d4x(∂µφ∂

µφ−m2φ2), (4)

but it can be rewritten as

S0[φ] =
1

2

∫
d4x d4y φ(x)[−∂µ∂µ −m2]δ(x− y)φ(y). (5)

We have performed the partial integration and neglected the surface term because
φ(x0 → ±∞, |x| → ∞) = 0.

� The Hamiltonian density is defined through the Legendre transformation

H(x) = π(x) φ̇(x)− L(x), (6)

and the conjugate momentum is

π(x) =
∂L(x)

∂φ̇(x)
= φ̇(x). (7)

� The Hamiltonian and the Hamiltonian density are

H(t) =

∫
d3xH(x), (8)

H(x) =
1

2
π2(x) +

1

2
(∇φ(x))2 +

1

2
m2φ2(x)︸ ︷︷ ︸

≡H0(x)

−φ(x) J(x). (9)
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� Our aim here is to derive the path integral representation of the generating functional W0[J ]
which is defined as the vacuum-vacuum transition amplitude in the presence of interaction
φ(x)J(x). Therefore,

W0[J ] ≡ 〈0 out|0 in〉, (10)

where |0 in〉 is the vacuum state in the remote past and |0 out〉 in the remote future. Both
states are in the Heisenberg picture.

� The generating functional, which is computed with the Hamiltonian (8), is called ‘free’ and
is labeled with the subscript ‘0’ even so the field interacts with the external source J .

� Now, we express the vacuum states in the Heisenberg picture through the vacuum state in
the Schrödinger picture at an arbitrarily chosen time t = 0 which is denoted as |0〉. Thus,
we get

|0 out〉 = T exp
[
i

∫ ∞
0

Ĥ(t)dt
]
|0〉, (11)

|0 in〉 = T exp
[
i

∫ −∞
0

Ĥ(t)dt
]
|0〉 = T exp

[
− i
∫ 0

−∞
Ĥ(t)dt

]
|0〉, (12)

where Ĥ is the Hamiltonian (8) which includes the interaction term φ(x)J(x). We clearly
distinguish operators, which act in the Hilbert space of states, from their classical counter-
parts as the operators are denoted with hats.

� Keeping in mind that

〈0 out| = (|0 out〉)† = 〈0|T exp
[
− i
∫ ∞
0

Ĥ(t)dt
]
, (13)

the transition amplitude in the Schrödinger picture equals

W0[J ] = 〈0|T exp
[
− i
∫ ∞
−∞

Ĥ(t)dt
]
|0〉, (14)

which can be rewritten as

W0[J ] = 〈0|T exp
[
− i
∫
d4x
(
H0(x)− φ(x) J(x)

)]
|0〉. (15)

� As it is well known, the n−point Green’s function equals the n−th order functional deriva-
tive of the generating functional (15)

i∆
(n)
0 (x1, . . . , xn) = (−i)n δ

δJ(x1)
· · · δ

δJ(xn)
W0[J ]

∣∣∣
J=0

, (16)

which is actually the reason why W0[J ] is called the ‘generating functional’.

� For our purpose it is more appropriate the write down the generating functional (14) as

W0[J ] = lim
t→∞
〈0|Û(t,−t)|0〉, (17)

where Û(t,−t) is the evolution operator

Û(t,−t) = T exp
[
− i
∫ t

−t
Ĥ(t′)dt′

]
. (18)
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Path-integral representation of free generating functional

� We are going to derive the path-integral representation of the functional (17).

� Performing the discretization of time, the generating functional (17) is written as

W0[J ] = lim
t→∞

lim
N→∞

〈0|T exp
[
− i

N−1∑
k=0

Ĥ(tk)∆t
]
|0〉 (19)

= lim
t→∞

lim
N→∞

〈0| exp
[
− iĤ(tN−1)∆t

]
exp

[
− iĤ(tN−2)∆t

]
· · · exp

[
− iĤ(t0)∆t

]
|0〉,

where tk = −t+ k∆t and ∆t ≡ 2t/N .

� Using the complete set of states |φk(x)〉, where φk(x) ≡ φ(tk,x), the generating functional
equals

W0[J ] = lim
t→∞

lim
N→∞

∫
DφN−1(x)

∫
DφN−2(x)· · ·

∫
Dφ2(x)

∫
Dφ1(x) (20)

× 〈0| exp
[
− iĤ(tN−1)∆t

]
|φN−1(x)〉〈φN−1(x)| exp

[
− iĤ(tN−2)∆t

]
|φN−2(x)〉

· · · 〈φ2(x)| exp
[
− iĤ(t1)∆t

]
|φ1(x)〉〈φ1(x)| exp

[
− iĤ(t0)∆t

]
|0〉,

where we have the functional integrals over the fields φk(x) at a given time tk.

� Let us now compute
〈φk+1(x)| exp

[
− iĤ(tk)∆t

]
|φk(x)〉. (21)

� Expanding the exponent

exp
[
− iĤ(tk)∆t

]
= 1− iĤ(tk)∆t+O(∆t2) (22)

and taking into account only the linear term, we have

〈φk+1(x)| exp
[
− iĤ(tk)∆t

]
|φk(x)〉 = δ

[
φk+1(x)−φk(x)

]
− i∆t〈φk+1(x)|Ĥ(tk)|φk(x)〉, (23)

where we have taken into account that

〈φk+1(x)|φk(x)〉 = δ
[
φk+1(x)− φk(x)

]
(24)

with δ
[
φk+1(x) − φk(x)

]
being the functional (infinitely dimensional) Dirac delta. When

the space variable x is discretized and the space points are numerated by the index i =
1, 2, . . . N , the state |φk(x)〉 is characterized by the set of field values {φ1

k, φ
2
k, . . . φ

N
k } where

φik ≡ φk(xi).

� We write
|φk(x)〉 = lim

N→∞
|φ1
k, φ

2
k, . . . φ

N
k 〉 (25)

and the functional Dirac delta should be understood as

δ
[
φk+1(x)− φk(x)

]
= lim

N→∞
ΠN
i=1 δ

(
φik+1 − φik). (26)

� The problem is now reduced to compute 〈φk+1(x)|Ĥ(tk)|φk(x)〉.
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� We introduce the set of complete momentum eigenstates |πk(x)〉. Then,

〈φk+1(x)|Ĥ(tk)|φk(x)〉 =

∫
Dπk(x)

2π
〈φk+1(x)|πk(x)〉〈πk(x)|Ĥ(tk)|φk(x)〉. (27)

� Performing the discretization of space variable x such that the index i = 1, 2, . . . N numer-
ates the space points, we first compute

〈φk+1(x)|πk(x)〉 = lim
N→∞

〈φNk+1, φ
N−1
k+1 , . . . φ

1
k+1|π1

k, π
2
k, . . . π

N
k 〉 (28)

= lim
N→∞

exp
[
i∆V

N∑
i=1

πikφ
i
k+1

]
= exp

[
i

∫
d3x πk(x)φk+1(x)

]
,

where ∆V is the volume of elementary cube in the discretized R3−space.

� Using the Hamiltonian (8) we compute 〈πk(x)|Ĥ(tk)|φk(x)〉 as

〈πk(x)|Ĥ(tk)|φk(x)〉 (29)

= 〈πk(x)|
∫
d3x′

[1
2
π̂2
k(x
′) +

1

2

(
∇φ̂k(x′)

)2
+

1

2
m2φ̂2

k(x
′)− φ̂k(x′) Jk(x′)

]
|φk(x)〉.

� It is not difficult to guess the result but it is instructive to analyze the problem in detail by
performing the discretization. Then, the first term is

1

2
〈πk(x)|

∫
d3x π̂2

k(x)|φk(x)〉 = lim
N→∞

∆V

2
〈πNk , πN−1k , . . . π1

k|
N∑
i=1

(π̂ik)
2|φ1

k, φ
2
k, . . . φ

N
k 〉 (30)

= lim
N→∞

∆V

2

[ N∑
i=1

(πik)
2
]
〈πNk , πN−1k , . . . π1

k|φ1
k, φ

2
k, . . . φ

N
k 〉

= lim
N→∞

∆V

2

[ N∑
i=1

(πik)
2
]

exp
[
− i∆V

N∑
i=1

πikφ
i
k

]
=

1

2

∫
d3x π2

k(x) exp
[
− i
∫
d3x πk(x)φk(x)

]
,

where we have used the fact that |π1
k, π

2
k, . . . π

N
k 〉 is the momentum eigenstate and thus

〈πNk , πN−1k , . . . π1
k|π̂ik = πik〈πNk , πN−1k , . . . π1

k|. (31)

� Computing the remaining terms from Eq. (29) - the gradient term actually requires some
extra care - one finds

〈πk(x)|Ĥ(tk)|φk(x)〉 = H(tk) exp
[
− i
∫
d3x πk(x)φk(x)

]
. (32)
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� Combining the results (24) and (32), we get

〈φk+1(x)| exp
[
− iĤ(tk)∆t

]
|φk(x)〉 = δ

[
φk+1(x)− φk(x)

]
(33)

− i∆t
∫
Dπk(x)

2π
H(tk) exp

[
− i
∫
d3x πk(x)

(
φk(x)− φk+1(x)

)]
+O(∆t2)

=

∫
Dπk(x)

2π
exp

[
− i
∫
d3x πk(x)

(
φk(x)− φk+1(x)

)](
1− iH(tk) ∆t

)
+O(∆t2)

=

∫
Dπk(x)

2π
exp

[
i∆t

∫
d3x
[
πk(x)

(φk+1(x)− φk(x)

∆t

)
−H(tk,x)

]]
+O(∆t2),

where we have used the functional identity

δ
[
φk+1(x)− φk(x)

]
=

∫
Dπk(x)

2π
exp

[
− i
∫
d3x πk(x)

(
φk(x)− φk+1(x)

)]
. (34)

� Plugging the expression (33) into Eq. (20), we obtain

W0[J ] = lim
t→∞

lim
N→∞

∫
DφN−1(x)

∫
DφN−2(x)· · ·

∫
Dφ1(x) (35)

×
∫
DπN(x)

2π

∫
DπN−1(x)

2π
· · ·
∫
Dπ0(x)

2π

× ΠN−1
k=0 exp

[
i∆t

∫
d3x
[
πk(x)

(φk+1(x)− φk(x)

∆t

)
−H(tk,x)

]]
.

The initial and final vacuum states in the definition of generating functional (17) are repre-
sented by the requirement that φN(x) = φ0(x) = 0. In the continuum limit it corresponds
to the condition φ(t→ ±∞,x) = 0.

� Taking the continuum limit in Eq. (35), we get

W0[J ] = C0

∫
Dφ(t,x)

∫
Dπ(t,x)

2π
exp

[
i

∫
dt

∫
d3x
(
π(t,x)φ̇(t,x)−H(t,x)

)]
, (36)

where the functional integrals are over the configurations of φ and π not in space but in
space-time. The normalization constant C0 is chosen in such a way that W0[J = 0] = 1.

� It is tempting to identify the expression
(
π(t,x)φ̇(t,x) − H(t,x)

)
with the Lagrangian

density. However, we should remember that π(t,x) is not a momentum conjugate to φ(t,x)
but an eigenvalue of the momentum operator π̂(t,x).

� Since the Hamiltonian (8) is quadratic in conjugate momenta, the integrals over momenta
can be easily performed. For this purpose we discretize the space-time using a single index
i = 1, 2, . . . N to numerate the points and ∆(4)V to denote the four-volume of elementary
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cube in the discretized Minkowski space. Then,

W0[J ] = lim
N→∞

∫
dφ1

∫
dφ2· · ·

∫
dφN

∫
dπ1
2π

∫
dπ2
2π
· · ·
∫
dπN
2π

(37)

× exp
[
i∆(4)V

N∑
i

(
πiφ̇i −

1

2
π2
i −

1

2
(∇φ)2i −

1

2
m2φ2

i + φiJi

)]
= lim

N→∞

( 1

2πi∆(4)V

)N/2 ∫
dφ1

∫
dφ2· · ·

∫
dφN

× exp
[
i∆(4)V

N∑
i

(1

2
φ̇2
i −

1

2
(∇φ)2i −

1

2
m2φ2

i + φiJi

)]
,

where the momentum integrals have been computed according to the formula∫ ∞
−∞

dp eipx−ap
2

=

√
π

a
e−

x2

4a . (38)

� Going to the continuum limit, the expression (37) provides

W0[J ] = C0

∫
Dφ(t,x) exp

[
i

∫
dt

∫
d3x
(
π(t,x)φ̇(t,x)−H(t,x)

)]
, (39)

where π(t,x) ≡ φ̇(t,x) is the classical momentum conjugate to φ(t,x). Hopefully, denoting
two different quantities – momentum eigenvalue and conjugate momentum – with the same
symbol π(t,x) will not cause a serious confusion.

� The generating functional is finally rewritten as

W0[J ] = C0

∫
Dφ(x) exp

[
i

∫
d4xL(x)

]
, (40)

where L(x) = L0(x) + φ(x) J(x), see Eq. (1), and the normalization constant, which guar-
antees that W0[J = 0] = 1, equals

C−10 =

∫
Dφ(x) exp

[
i

∫
d4xL0(x)

]
. (41)

Free Green’s functions

� The n−point Feynman Green function, which is the vacuum expectation value of the chrono-
logically ordered products of the field operators in Heisenberg picture, is defined as

i∆
(n)
0 (x1, . . . , xn) = 〈0|T φ̂(x1) . . . φ̂(xn)|0〉, (42)

where T is a time ordering operator.

� One observes that the n−point Green function is given as the functional derivative of the
generating functional (40)

i∆
(n)
0 (x1, . . . , xn) = (−i)n δ

δJ(x1)
· · · δ

δJ(xn)
W0[J ]

∣∣∣
J=0

. (43)
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� Computing the derivatives and putting J = 0, one indeed finds

i∆
(n)
0 (x1, . . . , xn) = C0

∫
Dφ(x) φ(x1) φ(x2) . . . φ(xn) exp

[
i

∫
d4xL0(x)

]
. (44)

� To better see the relation of the Green function (42) with the vacuum-vacuum transition
amplitude (17) written in the Schrödinger picture, the formula (42) should be rewritten in
the Schrödinger picture. For simplicity we consider here only the case of n = 2 with t2 > t1
and we assume that Ĥ is time independent. Then,

i∆
(2)
0 (x1, x2) = 〈0|U(∞, t2)φS(x2)U(t2, t1)φS(x1)U(t1,−∞)|0〉, (45)

where U(t2, t1) ≡ T exp
[
− i
∫ t2
t1
dt Ĥ(t)

]
. Starting with the expression (45) and following

the same steps, which led us from the transition amplitude (17) to the generating functional
(40), we obtain the Green function expressed as in Eq. (44).

� We note that the formula (43) can be expressed as the Taylor expansion of the generating
functional (40)

W0[J ] =
∞∑
n=0

in

n!

∫
d4x1d

4x2 . . . d
4xn i∆

(n)
0 (x1, . . . , xn) J(x1)J(x2) . . . J(xn). (46)

Explicit form of free generating functional

� Since the free Lagrangian depends quadratically on the fields, the functional integral in
Eq. (40) can be computed explicitly, using the integral formula∫

dnx exp
[
− 1

2
xAx− b · x

]
=

√
(2π)n

detA
exp

[1

2
bA−1b

]
. (47)

� With the substitutions A→ i(∂µ∂
µ +m2) and b→ −iJ(x), the generating functional (40)

gets the following explicit form

W0[J ] = exp
[
− i

2

∫
d4xd4yJ(x)∆F (x− y)J(y)

]
, (48)

where the normalization constant is absent as the condition W0[J = 0] = 1 is trivially
satisfied; ∆F (x) is the Feynman propagator which is an inverse of the operator ∂µ∂

µ +m2

that is it satisfies the equation

[∂µ∂
µ +m2]∆F (x) = −δ(4)(x). (49)

The Feynman boundary condition must be chosen because the functional (48) generates
the time-ordered Green’s functions.

� As we remember, the Feynman propagator equals

∆F (x) =

∫
d4x

(2π)4
e−ipx∆F (x), ∆F (p) =

1

p2 −m2 + i0+
. (50)
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Explicit form of free Green’s functions

� Using the free generating functional derived in the previous section, we compute here the
n−point Green’s functions starting with the two-point function which is

i∆
(2)
0 (x1, x2) = − δ

δJ(x1)

δ

δJ(x2)
exp

[
− i

2

∫
d4x′1d

4x′2J(x′1) ∆F (x′1 − x′2) J(x′2)
]∣∣∣
J=0

. (51)

� The first differentiation leads us to

i∆
(2)
0 (x1, x2) =

i

2

δ

δJ(x1)
exp

[
− i

2

∫
d4x′1d

4x′2J(x′1) ∆F (x′1 − x′2) J(x′2)
]

(52)

×
[ ∫

d4x′2∆F (x2 − x′2) J(x′2) +

∫
d4x′1J(x′1) ∆F (x′1 − x2)

]∣∣∣
J=0

.

The second derivative acts on the product of two functionals. Taking into account that at
the end we put J = 0, one observes that the term coming from the derivative of the first
functional vanishes. Thus, one immediately finds

i∆
(2)
0 (x1, x2) =

i

2

δ

δJ(x1)

[ ∫
d4x′2∆F (x2 − x′2) J(x′2) +

∫
d4x′1J(x′1) ∆F (x′1 − x2)

]∣∣∣
J=0

=
i

2

[
∆F (x2 − x1) + ∆F (x1 − x2)

]
. (53)

� Taking into account the symmetry ∆F (x) = ∆F (−x), we obtain

i∆
(2)
0 (x1, x2) = i∆F (x1 − x2). (54)

� One observes that ∆
(3)
0 and all other free Green’s functions of odd n vanish.

� Let us consider the four-point function given as

i∆
(4)
0 (x1, x2, x3, x4) =

(1

i

)4 δ

δJ(x1)

δ

δJ(x2)

δ

δJ(x3)

δ

δJ(x4)
W0[J ]

∣∣∣
J=0

. (55)

� The computation is much simplified by observation that this is the third term of Taylor

expansion of the exponential function from W0[J ] which determines ∆
(4)
0 . The first and the

second terms are canceled by the differentiation while the fourth and higher vanish after
the limit J = 0 is taken. Thus, one writes

i∆
(4)
0 (x1, x2, x3, x4) =

1

2!

( i
2

)2 δ

δJ(x1)

δ

δJ(x2)

δ

δJ(x3)

δ

δJ(x4)
(56)

×
∫
d4x′1d

4x′2d
4x′3d

4x′4J(x′1) ∆F (x′1 − x′2) J(x′2) J(x′3) ∆F (x′3 − x′4) J(x′4)
∣∣∣
J=0

.

� The differentiation becomes simpler when the formula (56) is written symbolically as

i∆
(4)
0 (1, 2, 3, 4) =

1

2!

( i
2

)2 δ4

δJ1δJ2δJ3δJ4

∑
i,j,k,l

JiJjJkJl∆
ij
F∆kl

F

∣∣∣
J=0

, (57)

where Jm ≡ J(xm) with m = 1, 2, 3, 4, and Jm ≡ J(x′m) with m = i, j, k, l; the sums
represent the integrals.
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� After computing all four derivatives, one finds

i∆
(4)
0 (1, 2, 3, 4) =

1

2!

( i
2

)2 ∑
i,j,k,l

(58)

(
δi4δj3δk2δl1 + δi4δj3δk1δl2 + δi4δj2δk3δl1 + δi4δj1δk3δl2 + δi4δj2δk1δl3 + δi4δj1δk2δl3

+ δi3δj4δk2δl1 + δi3δj4δk1δl2 + δi2δj4δk3δl1 + δi1δj4δk3δl2 + δi2δj4δk1δl3 + δi1δj4δk2δl3

+ δi3δj2δk4δl1 + δi3δj1δk4δl2 + δi2δj3δk4δl1 + δi1δj3δk4δl2 + δi2δj1δk4δl3 + δi1δj2δk4δl3

+ δi3δj2δk1δl4 + δi3δj1δk2δl4 + δi2δj3δk1δl4 + δi1δj3δk2δl4 + δi2δj1δk3δl4 + δi1δj2δk3δl4
)
∆ij
F∆kl

F .

� Because of the symmetry ∆ij
F = ∆ji

F , the number of terms is dramatically reduced. Per-
forming the reduction step by step, one obtains

i∆
(4)
0 (1, 2, 3, 4) = −

∑
i,j,k,l

(
δi4δj3δk2δl1 + δi4δj2δk3δl1 + δi4δj1δk3δl2

)
∆ij
F∆kl

F (59)

= −∆34
F ∆12

F −∆24
F ∆13

F −∆14
F ∆23

F .

which is finally written as

i∆
(4)
0 (x1, x2, x3, x4) = −∆F (x1 − x2) ∆F (x3 − x4)−∆F (x1 − x3) ∆F (x2 − x4)

−∆F (x1 − x4) ∆F (x2 − x3). (60)

� The result (60) is actually an example of the Wick’s theorem, to be discussed further on,
which, in particular, states that any n−point free Green function can be written as a sum
over all possible products of n/2 two-point Green functions ∆F (xi − xj).

Self-interacting Scalar Field

� We include now an interaction into consideration. Specifically, we study here the self-
interacting scalar field with the Lagrangian density given as

L(x) =
1

2
∂µφ(x)∂µφ(x)− 1

2
m2(x)φ2(x)− λ

4!
φ4(x), (61)

where λ is the coupling constant.

� The field obeys the equation of motion[
∂2 +m2

]
φ(x) = − λ

3!
φ3(x). (62)

� The generating functional is not derived but postulated in the expected form

W [J ] = C

∫
Dφ(x) exp

{
i
[
S0 + SI +

∫
d4x J(x)φ(x)

]}
, (63)

where C is the normalization constant discussed later on, the free action is given by Eq. (4)
and

SI [φ] =

∫
d4xLI(x) = − λ

4!

∫
d4xφ4(x). (64)
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� Making use of a simple observation that

exp(αx2 + βx4 + jx) = exp
(
β
d4

dj4

)
exp(αx2 + jx), (65)

the generating functional (63) can be written as

W [J ] = C exp
{
iSI

[1

i

δ

δJ

]}
W0[J ], (66)

where W0[J ] is the generating functional of free fields (48) and

SI

[1

i

δ

δj

]
= − λ

4!

(1

i

)4 ∫
d4x

δ4

δj4(x)
= − λ

4!

∫
d4x

δ4

δj4(x)
. (67)

� The generating functional of the form (66) is used to obtain a perturbative expansion of
any Green’s function or, equivalently, to derive the Feynman rules of the expansion.

Two-point Green’s function

� To derive the two-point Green’s function of interacting scalar fields we have to compute the
following expression

i∆(2)(x1, x2) =
(1

i

)2 ∂

∂J(x1)

∂

∂J(x2)
exp

{
− i λ

4!

(1

i

)4 ∫
d4x

δ4

δJ4(x)

}
W0[J ]

∣∣∣∣
J=0

. (68)

� Assuming temporarily that the normalization constant C in Eq. (66) equals unity, one finds

i∆(2)(x1, x2) =
(1

i

)2 ∂

∂J(x1)

∂

∂J(x2)
(69)

× exp
{
− i λ

4!

∫
d4x

δ4

δJ4(x)

}
exp

{
− i

2

∫
d4x′1d

4x′2J(x′1)∆F (x′1 − x′2)J(x′2)
}∣∣∣∣

J=0

where we have used the explicit form of the free generating functional given by Eq. (48).

� Expanding the two exponentials in Eq. (69) into Taylor series, we get

i∆(2)(x1, x2) = − ∂

∂J(x1)

∂

∂J(x2)
(70)

×
{

1− iλ

4!

∫
d4x

δ4

δJ4(x)
+

1

2!

(−iλ
4!

)2[ ∫
d4x

δ4

δJ4(x)

]2
+ · · ·

}
×
{

1− i

2

∫
d4x′1d

4x′2J(x′1)∆F (x′1 − x′2)J(x′2)

+
1

2!

( i
2

)2 ∫
d4x′1d

4x′2d
4x′′1d

4x′′2J(x′1)∆F (x′1 − x′2)J(x′2)J(x′′1)∆F (x′′1 − x′′2)J(x′′2) + · · ·
}∣∣∣∣

J=0

.
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Figure 1: Diagrammatic representation of the first order contributions to the two-point Green’s function.

Order λ

� One observes that the only terms that survive are those where the number of derivatives
with respect to J equals the number J ’s. The contribution of the order λ, which is labeled
with the index ‘1’, is written symbolically as

i∆
(2)
1 (1, 2) = − iλ

3! 4!

( i
2

)3 ∂

∂J1

∂

∂J2

∑
a

δ4

δJ4
a

∑
ijklmn

JiJjJkJlJmJn∆ij
F∆kl

F ∆mn
F , (71)

where the sums represent the integrals.

� We have here three categories of space-time points: the external points x1, x2 represented
by 1 and 2, the interaction point x represented by the index ‘a’ and the intermediate points
x′1, x

′
2, x
′′
1, x

′′
2 represented by the indices i, j, k, l which disappear in the final expression. We

note that it is no longer needed to set J = 0.

� After taking the derivative of the order 6 in Eq. (71), one gets 6! = 720 terms of two generic
forms ∑

a

∑
ijklmn

δi1δj2δkaδlaδmaδna∆ij
F∆kl

F ∆mn
F =

∑
a

∆12
F ∆aa

F ∆aa
F , (72)

∑
a

∑
ijklmn

δi1δj2δkaδlaδmaδna∆ij
F∆kl

F ∆mn
F =

∑
a

∆1a
F ∆2a

F ∆aa
F . (73)

Let us compute the number of terms keeping in mind the symmetry ∆ij
F = ∆ji

F . In case
of the first type there are six possibilities to assign the index ‘1’ to the product of three
Green’s functions and only one possibility to assign the index ‘2’. There are 4! possibilities
to assign four indices ‘a’ to the Green’s functions. Thus, there are 6 · 4! = 144 terms of the
first type.

� To compute the number of terms of the second type, one observes that there are six possi-
bilities to assign the index ‘1’ and four possibilities to assign the index ‘2’. There are again
4! possibilities to assign four indices ‘a’. Consequently, there are 6 · 4 · 4! = 576 terms of the
second type. So, there are 144 + 576 = 720 terms.

� Taking into account the symmetry ∆ij
F = ∆ji

F and computing the numerical coefficient from
Eq. (71) as 3! · 4! · 23 = 1152, one finds

i∆
(2)
1 (x1, x2) = −λ

2

∫
d4x ∆F (x1 − x)∆F (x− x)∆F (x− x2)

− λ

8
∆F (x1 − x2)

∫
d4x

(
∆F (x− x)

)2
, (74)

which is represented by the diagrams in Fig. 1.
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� One observes that the sum of zeroth and first contributions can be written as the following
product

i∆(2)(x1, x2) =
(
i∆F (x1 − x2)−

λ

2

∫
d4x ∆F (x1 − x)∆F (x− x)∆F (x− x2)

)
×
(

1 + i
λ

8

∫
d4x

(
∆F (x− x)

)2)
+O(λ2). (75)

� The second bracket includes, except the unity, the so-called disconnected diagram from
Fig. 1 which represents the vacuum-vacuum transition amplitude of the order λ. The first
bracket gives the so-called connected Green’s function which is of our actual interest.

� The disconnected part of the Green’s functions representing the vacuum-vacuum transition
amplitude can be excluded systematically by choosing the normalization constant C in the
definition of generating functional (66) in such a way that C−1 = W [J = 0] which just
equals the vacuum-vacuum transition amplitude.

� The normalization constant is

C−1 = exp
{
iSI

[1

i

δ

δJ

]}
W0[J ]

∣∣∣
J=0

(76)

= exp
{
− i λ

4!

∫
d4x

δ4

δJ4(x)

}
exp

{
− i

2

∫
d4x′1d

4x′2J(x′1)∆F (x′1 − x′2)J(x′2)
}∣∣∣

J=0
.

Expanding C−1 up to O(λ2) and using the symbolic notation, we get

C−1 = 1 +
(
− iλ

4!

) 1

2!

( i
2

)2∑
a

δ4

δJ4
a

∑
ijkl

JiJjJkJl∆
ij
F∆kl

F (77)

= 1 +
iλ

192

∑
a

δ4

δJ4
a

∑
ijkl

JiJjJkJl∆
ij
F∆kl

F = 1 +
iλ

192
4!
∑
a

∆aa
F ∆aa

F = 1 +
iλ

8

∑
a

∆aa
F ∆aa

F ,

which in the standard notation coincides with the second bracket in Eq. (75).

� The connected Green’s function (labeled with the index ‘c’) of the order λ thus equals

i∆(2)
c (x1, x2) = i∆F (x1 − x2)−

λ

2

∫
d4x ∆F (x1 − x)∆F (x− x)∆F (x− x2). (78)

Figure 2: Diagrammatic representation of the second order contributions to the two-point Green’s function.



Lecture X Statistical Quantum Field Theory 13

Figure 3: Diagrammatic representation of the complete two-point Green’s function.

Order λ2

� The analysis of the order λ2 is much more tedious but the result can be easily guessed.

� If the normalization constant C is really a constant, the diagrams corresponding to the
second order contributions to the two-point Green’s function are shown in Fig. 2.

� One observes that the two-point Green’s function, which includes the contributions up to
the second order, can be expressed as the product represented graphically in Fig. 3.

� The second order contributions to the normalization constant given by Eq. (76) are repre-
sented by the diagrams shown in Fig. 4.

� One sees that combining the zeroth, first and second order contributions to the normaliza-
tion constant (76), one gets the diagrams from the right bracket in Fig. 3.

� If we include normalization constant (76) in the generating functional (66), the disconnected
subgraphs, corresponding to the vacuum-vacuum transition amplitude, are eliminated and
the connected two-point Green’s function is of the form diagrammatically represented by
the left bracket of Fig. 3.

Generating functional of connected diagrams

� Instead of modifying the normalization constant, one can define the new generating func-
tional

Z[J ] = −i lnW [J ], (79)

which independently of the normalization constant generates the connected Green’s func-
tions as

∆(n)
c (x1, . . . , xn) = (−i)n δ

δJ(x1)
· · · δ

δJ(xn)
Z[J ]

∣∣∣∣
J=0

. (80)

� In case of non-interacting fields, the explicit form of the generating functional Z[J ] is

Z0[J ] = −1

2

∫
d4xd4yJ(x)∆F (x− y)J(y), (81)

where the formula (48) has been used.

Figure 4: Diagrammatic representation of the second order contributions to C−1.
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� Eq. (81) immediately shows that

∆
(n)
0c (x1, . . . , xn) = (−i)n δ

δJ(x1)
· · · δ

δJ(xn)
Z0[J ]

∣∣∣∣
J=0

=

{
∆F (x1 − x2) if n = 2,
0 if n 6= 2.

(82)

that is there is no free connected Green’s function except the two-point function.

� In case of interacting field, the explicit form of the generating functional of connected
diagrams is

Z[J ] = −i ln
{

exp
(
iSI

[1

i

δ

δJ

])
exp

[
− i

2

∫
d4xd4yJ(x)∆F (x− y)J(y)

]}
, (83)

but this form is not very useful.

� Let us see how the formula (80) works for one-, two- and three-point Green’s functions. In
case of one-point function, we have

∆(1)
c (x) = −i δZ[J ]

δJ(x)

∣∣∣∣
J=0

= − 1

W [J ]

δW [J ]

δJ(x)

∣∣∣∣
J=0

= −i〈φ(x)〉, (84)

where

〈. . . 〉 ≡
∫
Dφ(x) . . . exp

(
iS[φ]

)∫
Dφ(x) exp

(
iS[φ]

) . (85)

So, the one-point function represents the field expectation value.

� In case of two-point Green’s function, one finds

∆(2)
c (x1, x2) = − δ2Z[J ]

δJ(x1) δJ(x2)

∣∣∣∣
J=0

(86)

= i
1

W [J ]

δ2W [J ]

δJ(x1) δJ(x2)

∣∣∣∣
J=0

− i 1

W [J ]

δW [J ]

δJ(x1)

1

W [J ]

δW [J ]

δJ(x2)

∣∣∣∣
J=0

= −i〈φ(x1)φ(x2)〉+ i〈φ(x1)〉〈φ(x2)〉

= −i
〈(
φ(x1)− 〈φ(x1)〉

)(
φ(x2)− 〈φ(x2)〉

)〉
.

� If 〈φ(x)〉 = 0, as is the case of the Lagrangian (61), the second term of Eq. (86) vanishes
while the first term represents the connected Green’s function that would be obtained from
the generating functional (66) with the normalization constant (76).

� If 〈φ(x)〉 6= 0, as is the case of the Lagrangian (61) with m2 < 0, the formula (86) tells us
that the connected Green’s function should be computed not as the expectation value of
the product of fields φ(x) but as the expectation value of the product of φ(x)− 〈φ(x)〉.

� The computation of the three-point function confirms our observations made with the one-
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and two-point functions. Indeed,

∆(3)
c (x1, x2, x3) = i

δ3Z[J ]

δJ(x1) δJ(x2) δJ(x3)

∣∣∣∣
J=0

(87)

= − 1

W [J ]

δ2W [J ]

δJ(x1) δJ(x2) δJ(x3)

∣∣∣∣
J=0

+
2

W 3[J ]

δW [J ]

δJ(x1)

δW [J ]

δJ(x2)

δW [J ]

δJ(x3)

∣∣∣∣
J=0

− 1

W 2[J ]

(
δ2W [J ]

δJ(x1) δJ(x2)

δW [J ]

δJ(x3)
+

δ2W [J ]

δJ(x3) δJ(x1)

δW [J ]

δJ(x2)
+

δ2W [J ]

δJ(x2) δJ(x3)

δW [J ]

δJ(x1)

)∣∣∣∣
J=0

= i〈φ(x1)φ(x2)φ(x3)〉 − 2i〈φ(x1)〉〈φ(x2)〉〈φ(x3)〉

+ i〈φ(x1)φ(x2)〉〈φ(x3)〉+ i〈φ(x3)φ(x1)〉〈φ(x2)〉+ i〈φ(x2)φ(x3)〉〈φ(x1)〉

= i
〈(
φ(x1)− 〈φ(x1)〉

)(
φ(x2)− 〈φ(x2)〉

)(
φ(x3)− 〈φ(x3)〉

)〉
.

� We close the lecture with the Taylor expansion of the generating functional (79) which reads

Z[J ] =
∞∑
n=0

in

n!

∫
d4x1d

4x2 . . . d
4xn ∆(n)

c (x1, . . . , xn) J(x1)J(x2) . . . J(xn). (88)


