Coalescence model of production of light nuclei

Stanisław Mrówczyński

National Centre for Nuclear Research, Warsaw, Poland and Jan Kochanowski University, Kielce, Poland

Two very different cases of producing light nuclei

Genuine production

hard process

Shattering of incoming nuclei

Final state interaction

S.T. Butler & C.A. Pearson, Phys. Rev. **129**, 836 (1963) A. Schwarzschild & C. Zupancic, Phys. Rev. **129**, 854 (1963)

Factorization of production of nucleons and formation of a deuteron

$$\frac{1}{2}\frac{dN^{np}}{d^{3}\mathbf{p}_{n}d^{3}\mathbf{p}_{p}} \approx \frac{dN^{pp}}{d^{3}\mathbf{p}_{p}d^{3}\mathbf{p}_{p}} \approx \left(\frac{dN^{p}}{d^{3}\mathbf{p}_{p}}\right)^{2}$$

$$\frac{dN^{D}}{d^{3}\mathbf{P}_{D}} = A_{D} \left(\frac{dN^{p}}{d^{3}\mathbf{p}_{p}}\right)^{2}$$

Deuteron formation rate

$$\mathbf{R} \equiv \frac{1}{2}(\mathbf{r}_{1} + \mathbf{r}_{2}), \quad \mathbf{r} \equiv \mathbf{r}_{1} - \mathbf{r}_{2}$$
$$A_{D} = \frac{3}{4}(2\pi)^{3}\int d^{3}\mathbf{r} S_{r}(\mathbf{r}) |\varphi_{D}(\mathbf{r})|^{2}$$
$$\psi(\mathbf{r}_{1}, \mathbf{r}_{2}) = e^{i\mathbf{P}\cdot\mathbf{R}}\varphi_{D}(\mathbf{r})$$

$$S_r(\mathbf{r}) \equiv \int d^3 \mathbf{R} S\left(\mathbf{R} - \frac{1}{2}\mathbf{r}\right) S\left(\mathbf{R} + \frac{1}{2}\mathbf{r}\right)$$
 distribution of relative distance of *n* and *p*

H. Sato and K. Yazaki, Phys. Lett. B 98, 153 (1981)

Quantum-mechanical meaning of the formation rate formula

Transition matrix element

$$M = \left| \int d^{3}\mathbf{r} \psi^{*}(\mathbf{r}) \varphi(\mathbf{r}) \right|^{2} = \int d^{3}\mathbf{r} d^{3}\mathbf{r}' \varphi^{*}(\mathbf{r}') \psi(\mathbf{r}') \psi^{*}(\mathbf{r}) \varphi(\mathbf{r})$$

$$M = \int d^{3}\mathbf{r} d^{3}\mathbf{r}' \varphi^{*}(\mathbf{r}') \rho(\mathbf{r}',\mathbf{r}) \varphi(\mathbf{r})$$

If density matrix is diagonal

$$\rho(\mathbf{r}',\mathbf{r}) = S(\mathbf{r})\,\delta^{(3)}(\mathbf{r}'-\mathbf{r}) \qquad \Rightarrow \qquad M = \int d^3\mathbf{r}\,S(\mathbf{r}) \left|\varphi(\mathbf{r})\right|^2$$

Diagonal density matrix

$$\left\langle \psi \left| \hat{A} \right| \psi \right\rangle = \sum_{i,j} c_i^* c_j \left\langle \alpha_i \left| \hat{A} \right| \alpha_j \right\rangle = \sum_{i,j} \rho_{ji} A_{ij}$$
$$\left| \psi \right\rangle = \sum_i c_i \left| \alpha_i \right\rangle \qquad \rho_{ji} \equiv c_i^* c_j \qquad A_{ij} \equiv \left\langle \alpha_i \left| \hat{A} \right| \alpha_j \right\rangle$$

density matrix

- averaging over time or events

$$\langle \psi | \hat{A} | \psi \rangle = \sum_{i,j} \overline{c_i^* c_j} \langle \alpha_i | \hat{A} | \alpha_j \rangle = \sum_i |c_i|^2 A_{ii}$$

$$\overline{\rho_{ji}} = \overline{c_i^* c_j} = \delta^{ij} |c_i|^2 \quad \text{random phase approximation}$$

diagonal density matrix

Deuteron formation rate

$$\mathbf{R} = \frac{1}{2}(\mathbf{r}_{1} + \mathbf{r}_{2}), \quad \mathbf{r} = \mathbf{r}_{1} - \mathbf{r}_{2}$$
$$A_{D} = \frac{3}{4}(2\pi)^{3}\int d^{3}\mathbf{r} S_{r}(\mathbf{r}) |\varphi_{D}(\mathbf{r})|^{2}$$
$$\psi(\mathbf{r}_{1}, \mathbf{r}_{2}) = e^{i\mathbf{P}\cdot\mathbf{R}}\varphi_{D}(\mathbf{r})$$

$$S_r(\mathbf{r}) \equiv \int d^3 \mathbf{R} S\left(\mathbf{R} - \frac{1}{2}\mathbf{r}\right) S\left(\mathbf{R} + \frac{1}{2}\mathbf{r}\right)$$
 distribution of relative distance of *n* and *p*

H. Sato and K. Yazaki, Phys. Lett. B 98, 153 (1981)

n-p correlation function

$$C(\mathbf{q}) = \int d^{3}\mathbf{r}_{1} d^{3}\mathbf{r}_{2} S(\mathbf{r}_{1}) S(\mathbf{r}_{2}) |\psi_{\mathbf{q}}(\mathbf{r}_{1}, \mathbf{r}_{2})|^{2}$$

$$S_r(\mathbf{r}) \equiv \int d^3 \mathbf{R} S\left(\mathbf{R} - \frac{1}{2}\mathbf{r}\right) S\left(\mathbf{R} + \frac{1}{2}\mathbf{r}\right)$$

S.E. Koonin, Phys. Lett. B 70, 43 (1977)

n-p correlation function

Sum rule due to completeness of quantum states

Lednicky-Lyuboshitz formula

St. Mrówczyński, Phys. Lett. B 277, 43 (1992)

R. Maj & St. Mrówczyński, Phys. Rev. C 101, 014901 (2020) R. Maj & St. Mrówczyński, Phys. Rev. C 71, 044905 (2005) St. Mrówczyński, Phys. Lett. B 345, 393 (1995)

Emission time

Instantaneous emission

$$A_{D} = \frac{3}{4} (2\pi)^{3} \int d^{3}\mathbf{r}_{1} d^{3}\mathbf{r}_{2} S(\mathbf{r}_{1}) S(\mathbf{r}_{2}) |\psi(\mathbf{r}_{1},\mathbf{r}_{2})|^{2}$$

Emission extended in time

$$A_{D} = \frac{3}{4} (2\pi)^{3} \int dt_{1} d^{3} \mathbf{r}_{1} dt_{2} d^{3} \mathbf{r}_{2} S(t_{1}, \mathbf{r}_{1}) S(t_{2}, \mathbf{r}_{2}) |\psi(\mathbf{r}_{1} + \mathbf{v}t_{1}, \mathbf{r}_{2} + \mathbf{v}t_{2})|^{2}$$

S.E. Koonin, Phys. Lett. B 70, 43 (1977)

Emission time cont.

$$A_{D} = \frac{3}{4} (2\pi)^{3} \int dt_{1} d^{3} \mathbf{r}_{1} dt_{2} d^{3} \mathbf{r}_{2} S(t_{1}, \mathbf{r}_{1} - \mathbf{v}t_{1}) S(t_{2}, \mathbf{r}_{2} - \mathbf{v}t_{2}) |\psi(\mathbf{r}_{1}, \mathbf{r}_{2})|^{2}$$

$$A_D = \frac{3}{4} (2\pi)^3 \int d^3 \mathbf{r} S_r(\mathbf{r}) \left| \varphi(\mathbf{r}) \right|^2$$

 $S_r(\mathbf{r}) \equiv \int dt \; S_r(t, \mathbf{r} - \mathbf{v}t)$

$$S_r(t,\mathbf{r}) \equiv \int dT \, d^3 \mathbf{R} \, S\left(T - \frac{1}{2}t, \mathbf{R} - \frac{1}{2}\mathbf{r}\right) S\left(T + \frac{1}{2}t, \mathbf{R} + \frac{1}{2}\mathbf{r}\right)$$

$$S(t,\mathbf{r}) = \left(\frac{1}{2\pi\tau^{2}}\right)^{1/2} \left(\frac{1}{2\pi R_{s}^{2}}\right)^{3/2} \exp\left(-\frac{t^{2}}{2\tau^{2}}\right) \exp\left(-\frac{\mathbf{r}^{2}}{2R_{s}^{2}}\right) \qquad S_{r}(\mathbf{r}) = \left(\frac{1}{2\pi(R_{s}^{2}+v^{2}\tau^{2})}\right)^{3/2} \exp\left(-\frac{\mathbf{r}^{2}}{2(R_{s}^{2}+v^{2}\tau^{2})}\right) \left(\frac{R_{s}}{R_{s}} \rightarrow \sqrt{R_{s}^{2}+v^{2}\tau^{2}}\right) = \left(\frac{1}{2\pi(R_{s}^{2}+v^{2}\tau^{2})}\right)^{3/2} \exp\left(-\frac{\mathbf{r}^{2}}{2(R_{s}^{2}+v^{2}\tau^{2})}\right) = \left(\frac{1}{2\pi(R_{s}^{2}+v^{2}\tau^{2})}\right)^{3/2} \exp\left(-\frac{\mathbf{r}^{2}}{2(R_{s}^{2}+v^{2}\tau^{2})}\right)^{3/2} \exp\left(-\frac{\mathbf{r}^{2}}{2(R_{s}^{2}+v^{2}\tau^{2})}\right)^{3$$

Energy-momentum conservation

Energy-momentum conservation

$$\begin{cases} \mathbf{p}_p + \mathbf{p}_n = \mathbf{p}_D \\ E_p + E_n = E_D \end{cases}$$

St. Mrówczyński, J. Phys. G 11, 1087 (1987)

Hadron-deuteron correlations

Hadron-deuteron correlations carry information about a mechanism of deuteron production.

St. Mrówczyński & P. Słoń, Acta Phys. Pol. B 51, 1739 (2020)

1) Deuteron is treated as an elementary particle

Experimental definition

$$\frac{dN_{hD}}{d\mathbf{p}_h d\mathbf{p}_D} = C(\mathbf{p}_h, \mathbf{p}_D) \frac{dN_h}{d\mathbf{p}_h} \frac{dN_D}{d\mathbf{p}_D}$$

Theoretical formula

$$C(\mathbf{p}_h, \mathbf{p}_D) = \int d^3 r_h \, d^3 r_D \, S(\mathbf{r}_h) \, S(\mathbf{r}_D) \left| \psi(\mathbf{r}_h, \mathbf{r}_D) \right|^2$$

distribution of emission points

1 7

h-D wave function

S.E. Koonin, Phys. Lett. B **70**, 43 (1977) R. Lednicky and V.L. Lyuboshitz, Yad. Fiz. **35**, 1316 (1982)

1) Deuteron is treated as an elementary particle cont.

Separation of CM and relative motion

$$C(\mathbf{q}) = \int d^3 r S_r(\mathbf{r}) \left| \phi_{\mathbf{q}}(\mathbf{r}) \right|^2$$

"Relative" source function

$$S_{r}(\mathbf{r}) \equiv \int d^{3}R \ S\left(\mathbf{R} - \frac{m_{D}}{m_{D} + m_{h}}\mathbf{r}\right) S\left(\mathbf{R} + \frac{m_{h}}{m_{D} + m_{h}}\mathbf{r}\right) = \left(\frac{1}{4\pi R_{s}^{2}}\right)^{3/2} \exp\left(-\frac{\mathbf{r}^{2}}{4R_{s}^{2}}\right)$$

h

2) Deuteron is treated as a bound state of neutron and proton

Experimental definition

$$\frac{dN_{hD}}{d\mathbf{p}_h d\mathbf{p}_D} = C(\mathbf{p}_h, \mathbf{p}_D) A_D \frac{dN_h}{d\mathbf{p}_h} \frac{dN_n}{d\mathbf{p}_n} \frac{dN_p}{d\mathbf{p}_p}$$

Theoretical formula

$$C(\mathbf{p}_h, \mathbf{p}_D) A_D = \int d^3 r_h d^3 r_n d^3 r_p S(\mathbf{r}_h) S(\mathbf{r}_n) S(\mathbf{r}_p) \left| \psi_{hD}(\mathbf{r}_h, \mathbf{r}_n, \mathbf{r}_p) \right|^2$$

Deuteron formation rate
$$\frac{dN_D}{d\mathbf{p}_D} = A_D \frac{dN_n}{d\mathbf{p}_n} \frac{dN_p}{d\mathbf{p}_p} \qquad \frac{1}{2} \mathbf{P}_D = \mathbf{p}_n = \mathbf{p}_p$$
$$A_D = \frac{3}{8} (2\pi)^3 \int d^3 \mathbf{r}_n d^3 \mathbf{r}_p S(\mathbf{r}_n) S(\mathbf{r}_p) \left| \psi_D(\mathbf{r}_n, \mathbf{r}_p) \right|^2 = \frac{3}{8} (2\pi)^3 \int d^3 r_{np} S_r(\mathbf{r}_{np}) \left| \phi_D(\mathbf{r}_{np}) \right|^2$$
spin-isopsin factor
$$\psi_D(\mathbf{r}_n, \mathbf{r}_p) = e^{i\mathbf{P}\mathbf{R}} \phi_D(\mathbf{r}_{np})$$

St. Mrówczyński & P. Słoń, Acta Phys. Pol. B 51, 1739 (2020)

h

D

2) Deuteron is treated as a bound state of neutron and proton cont

Separation of CM and relative motion

$$\begin{cases} \mathbf{R} = \frac{m_p \mathbf{r}_p + m_n \mathbf{r}_n + m_h \mathbf{r}_h}{m_p + m_n + m_h} \\ \mathbf{r}_{np} = \mathbf{r}_p - \mathbf{r}_n \\ \mathbf{r} = \mathbf{r}_h - \frac{m_p \mathbf{r}_p + m_n \mathbf{r}_n}{m_p + m_n} \quad \psi(\mathbf{r}_h, \mathbf{r}_n, \mathbf{r}_p) = e^{i\mathbf{P}\mathbf{R}} \phi_{\mathbf{q}}(\mathbf{r}) \, \varphi_D(\mathbf{r}_{np}) \\ C(\mathbf{q}) = \frac{1}{A_D} \int d^3 R \, d^3 r_{np} \, d^3 r \, S(\mathbf{r}_h) \, S(\mathbf{r}_n) \, S(\mathbf{r}_p) \left| \phi_{\mathbf{q}}(\mathbf{r}) \right|^2 \left| \varphi_D(\mathbf{r}_{np}) \right|^2 \end{cases}$$

For Gaussian source

$$C(\mathbf{q}) = \int d^3 r S_{3r}(\mathbf{r}) \left| \phi_{\mathbf{q}}(\mathbf{r}) \right|^2$$

$$S_{3r}(\mathbf{r}) = \left(\frac{1}{3\pi R^2}\right)^{3/2} \exp\left(-\frac{\mathbf{r}^2}{3R^2}\right)$$

For a non-Gaussian source, A_D remains in the correlation function!

Direct vs. final state interaction

Direct production

$$C(\mathbf{q}) = \int d^3 r S_r(\mathbf{r}) \left| \phi_{\mathbf{q}}(\mathbf{r}) \right|^2$$

$$S_r(\mathbf{r}) = \left(\frac{1}{4\pi R^2}\right)^{3/2} \exp\left(-\frac{\mathbf{r}^2}{4R^2}\right)$$
$$\left(-\frac{1}{4R^2}\right)^{3/2} = \left(-\frac{\mathbf{r}^2}{4R^2}\right)$$

$$S_{3r}(\mathbf{r}) = \left(\frac{1}{3\pi R^2}\right)^{3/2} \exp\left(-\frac{\mathbf{r}^2}{\mathbf{3}R^2}\right)^{3/2}$$

Final state interaction

$$C(\mathbf{q}) = \int d^3 r S_{3r}(\mathbf{r}) \left| \phi_{\mathbf{q}}(\mathbf{r}) \right|^2$$

 $\sqrt{\frac{4}{3}} \approx 1.15$

p-D correlation function

Full three-body calculations

$$C(\mathbf{q}) = \frac{1}{A_D} \int d^3 r_n \, d^3 r_{p_1} \, d^3 r_{p_2} \, S(\mathbf{r}_n) \, S(\mathbf{r}_{p_1}) \, S(\mathbf{r}_{p_2}) \left| \psi_{pD}^{\mathbf{q}}(\mathbf{r}_n, \mathbf{r}_{p_1}, \mathbf{r}_{p_2}) \right|^2$$

p-D correlation function

 $R_{\rm s} = 1.43 \pm 0.16 \, {\rm fm}$

ALICE arXiv:2308.16120

M. Viviani et al, Phys. Rev. C 108, 064002 (2023)

Deuteron-deuteron correlation function

Direct production

$$C(\mathbf{q}) = \int d^3 r S_r(\mathbf{r}) \left| \phi_{\mathbf{q}}(\mathbf{r}) \right|^2$$

$$S_r(\mathbf{r}) = \left(\frac{1}{4\pi R^2}\right)^{3/2} \exp\left(-\frac{\mathbf{r}^2}{4R^2}\right)$$

$$S_{4r}(\mathbf{r}) = \left(\frac{1}{2\pi R^2}\right)^{3/2} \exp\left(-\frac{\mathbf{r}^2}{2R^2}\right)$$

Final state interaction & factorizatiom

$$C(\mathbf{q}) = \int d^3 r S_{4r}(\mathbf{r}) \left| \phi_{\mathbf{q}}(\mathbf{r}) \right|^2$$

St. Mrówczyński & P. Słoń, Phys. Rev. C 104, 024909 (2021)

$$\sqrt{2} \approx 1.41$$

ALICE Collaboration, Phys. Lett. B 819, 136440 (2021) ALICE Collaboration, Phys. Rev. Lett. 131, 042301 (2023)

Deuteron yield

$$N_{D} = \int d^{3}\mathbf{p} \frac{dN_{D}}{d^{3}\mathbf{p}} = N_{p}^{2}A_{D} \frac{2}{\pi\alpha^{3}} \frac{1}{1 - \cos\theta_{c}}$$

$$\frac{dN_D}{d^3 \mathbf{P}_D} = A_D \left(\frac{dN^p}{d^3 \mathbf{p}_p}\right)^2 \qquad \mathbf{P}_D = 2\mathbf{p}_p$$

St. Mrówczyński, arXiv: 2312.17695

$$\frac{dN_D}{d^3 \mathbf{P}_D} = \mathbf{A}_D \left(\frac{dN^p}{d^3 \mathbf{p}_p}\right)^2 \qquad \mathbf{P}_D = 2\mathbf{p}_p$$

$$E_D \frac{dN_D}{d^3 \mathbf{P}_D} = B_2 \left(E_p \frac{dN^p}{d^3 \mathbf{P}_p} \right)^2 \quad E_D = 2E_p$$

$$B_2 \approx 0.4 \pm 0.2 \text{ GeV}^2$$
$$A_D = \frac{1}{2} B_2 m$$
$$A_D \approx 24 \pm 12 \text{ fm}^{-3}$$

Hulthén wave function

$$\phi_D(r) = \sqrt{\frac{\alpha\beta(\alpha+\beta)}{2\pi(\alpha-\beta)^2}} \frac{\exp(-\alpha r) - \exp(-\beta r)}{r}$$

ALICE Collaboration, Phys. Rev. Lett. 131, 042301 (2023)

St. Mrówczyński, Phys. Lett. B 277, 43 (1992)

$$A_{D} = \frac{3}{4} (2\pi)^{3} \int d^{3}\mathbf{r} S_{r}(\mathbf{r}) |\varphi(\mathbf{r})|^{2} \approx \frac{3}{4} (2\pi)^{3} |\varphi(r=0)|^{2} \int d^{3}\mathbf{r} S_{r}(\mathbf{r})$$
$$r_{0} << r_{D}$$

$$A_{D} = \frac{3}{4} (2\pi)^{3} |\varphi(r=0)|^{2} = 3\pi^{2} \alpha \beta (\alpha + \beta) \approx 20.2 \text{ fm}^{-2}$$

 $r_{\rm o} < 0.2 \; {\rm fm}$

Hulthén wave function

$$\phi_D(r) = \sqrt{\frac{\alpha\beta(\alpha+\beta)}{2\pi(\alpha-\beta)^2}} \frac{\exp(-\alpha r) - \exp(-\beta r)}{r}$$

$$\alpha = 0.23 \, \text{fm}^{-1}, \quad \beta = 1.61 \, \text{fm}^{-1}$$

St. Mrówczyński, arXiv: 2312.17695

Exp: $A_D \approx 24 \pm 12 \text{ fm}^{-3}$

Big bound states from small sources

positronium

$$\pi^0 \rightarrow \gamma (e^+ e^-)$$

L. G. Afanasev et al., Phys. Lett. B 236, 116 (1990)

pionium

 $p\text{Be} \rightarrow X (\pi^+\pi^-)$

DIRAC Collaboration, Phys. Rev. Lett. 122, 082003 (2019)

 $\pi \mu$ atom

$$K_L^0 \rightarrow (\pi^{\pm} \mu^{\mp}) \nu_{\mu}$$

S. H. Aronson et al., Phys. Rev. D 33, 3180 (1986)

 $\frac{r_B}{-10^5}$ ~ 10⁵ r_0