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A system of chromodynamic fields, which can be treated as classical, is generated at the earliest stage of
relativistic heavy-ion collisions. Numerical simulations show that the system is unstable but the nature of
the instability is not well understood. We study the problem systematically. In the first paper, we have
performed a linear stability analysis of space-time uniform chromoelectric and chromomagnetic fields.
There they have been considered the Abelian configurations of single-color potentials linearly depending
on coordinates and non-Abelian ones where the fields are generated by the multicolor noncommuting
uniform potentials. Here we extend and supplement the analysis. We discuss the parallel chromoelectric
and chromomagnetic fields that occur simultaneously. We also consider a general non-Abelian
configuration of the uniform fields. Finally, we discuss the gauge dependence of our results.
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I. INTRODUCTION

Numerical simulations of the earliest phase of relativistic
heavy-ion collisions performed in the framework of the
color glass condensate (CGC) approach—reviewed at
length in the articles [1,2]—show that the system is
unstable [3,4], see also Ref. [5]. However, as explained in
detail in [6], the character of the instability is not well
understood. We plan to study the problem systematically.
Since the systemunder consideration is described in terms of
classical fields in the CGC approach used in [3,4], we
analyze the stability of classical chromodynamic fields.
In the first part of our project [6], we studied the linear

stability of constant and uniform chromomagnetic and
chromoelectric fields that occur separately. We considered
the Abelian configurations discussed in the past, where the
fields are due to single-color potentials linearly depending
on coordinates. However, we were mostly focused on the
non-Abelian configurations where the fields are generated
by the multicolor noncommuting constant uniform poten-
tials. In contrast to theAbelian configurations that satisfy the
sourceless Yang-Mills equations, the non-Abelian configu-
rations are the solutions of Yang-Mills equations with
appropriately chosen four currents. We derived a complete
spectrum of eigenfrequencies of small fluctuations around

the background fields that obey the linearized Yang-Mills
equations. The spectra of Abelian and non-Abelian con-
figurations are similar but different and they both include
unstable modes. We also briefly discussed the relevance of
our results for fields that are uniform only in a limited spatial
domain.
Here we discuss a system of parallel chromoelectric and

chromomagnetic fields as according to the CGC approach;
such a configuration occurs at the earliest phase of
relativistic heavy-ion collisions. In Sec. III we show that
the system of such fields, which are constant and uniform,
can be generated only by the potential known from the
Abelian theory. The non-Abelian configuration is not
possible. We perform the stability analysis showing that
the system’s dynamics is dominated by the chromoelectric
field. The solutions of linearized Yang-Mills equations run
away either to plus or minus infinity and in this sense the
system is genuinely unstable.
As already mentioned, we studied in [6] a stability of

non-Abelian configurations of space-time uniform chromo-
electric and chromomagnetic fields. Here we extend the
analysis, considering in Sec. IV a whole class of non-
Abelian configurations that yield the same field strengths
and the same energy density but are still gauge inequiva-
lent; that is, they cannot be changed one into another by
means of a gauge transformation [7]. It has been recently
conjectured [8], see also Ref. [9], that such configurations
of chromoelectric fields are stable against the quantum
Schwinger process of spontaneous production of gluons.
However, our linear analysis shows that the configurations
of both chromoelectric and chromomagnetic fields are
classically unstable.
Since we use the linearized Yang-Mills equations and we

fix a gauge condition, one wonders how our results depend
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on a chosen gauge. In Sec. V we show that, in spite of the
linearization, the chromodynamic strength tensor trans-
forms covariantly under gauge transformations, and con-
sequently, quantities like an energy-momentum tensor,
which are obtained from the strength tensor, are gauge
invariant. We compute the energy-momentum tensor cor-
responding to solutions of the linearized Yang-Mills equa-
tions and we demonstrate that in case of unstable modes the
system’s energy density and other components of the
energy-momentum tensor exponentially grow in time.
For completeness of our presentation, we introduce in

Sec. II the linearized Yang-Mills equations in the back-
ground gauge, which were already discussed in [6]. The
equations are subsequently used in the stability analyses.
We close our study in Sec. VI, summarizing and concluding
our results.
Throughout the paper, the indices i; j ¼ x, y, z, and μ,

ν ¼ 0, 1, 2, 3 label, respectively, the Cartesian spatial
coordinates and those of Minkowski space. The signature
of the metric tensor is ðþ;−;−;−Þ. The indices a; b ¼
1; 2;…N2

c − 1 numerate color components in the adjoint
representation of the SUðNcÞ gauge group. However, we
mostly use the SU(2) group. We neglect henceforth the
prefix “chromo” when referring to chromoelectric or
chromomagnetic fields. Since we study chromodynamics
only, this should not be confusing.

II. LINEARIZED CLASSICAL
CHROMODYNAMICS

The Yang-Mills equations written in the adjoint repre-
sentation of the SU(Nc) gauge group are

Dab
μ Fμν

b ¼ jνa; ð1Þ
where Dab

μ ≡ ∂μδ
ab − gfabcAc

μ, jνa is the color current, and
the strength tensor is

Fμν
a ¼ ∂

μAν
a − ∂

νAμ
a þ gfabcA

μ
bA

ν
c: ð2Þ

The electric and magnetic fields are given as

Ei
a ¼ Fi0

a ; Bi
a ¼

1

2
ϵijkFkj

a ; ð3Þ

where ϵijk is the Levi-Civita fully antisymmetric tensor.
We assume that the potential Āμ

a solves the Yang-Mills
equation (1) and we consider small fluctuations aμa around
Āμ
a. So, we define the potential

Aμ
aðt; rÞ≡ Āμ

aðt; rÞ þ aμaðt; rÞ; ð4Þ

such that jĀðt; rÞj ≫ jaðt; rÞj.
Assuming that the background potential Āμ

a satisfies the
Lorenz gauge condition ∂μĀ

μ
a ¼ 0 while the fluctuation

potential aμa that of the background gauge

D̄ab
μ aμb ¼ 0; ð5Þ

where D̄ab
μ ≡ ∂μδ

ab − gfabcĀc
μ, the Yang-Mills equation

linearized in aμa can be written as

½gμνðD̄ρD̄ρÞac þ 2gfabcF̄μν
b �acν ¼ 0: ð6Þ

The background gauge appears particularly convenient
for our purposes because different color and space-time
components of aaμ are mixed only through the tensor F̄μν

b
which enters Eq. (6). In case of other gauges, e.g., the
Lorenz gauge ∂μa

μ
a ¼ 0, the mixing is more severe.

Throughout the stability analysis presented in [6] and here,
we use the background gauge that facilitates comparisons
of various cases.

III. PARALLEL ELECTRIC AND
MAGNETIC FIELDS

The electric and magnetic fields that are constant uni-
form and both along the axis x are generated by the
potential known from the Abelian theory, that is

Āμ
aðt; rÞ ¼ δa1ð−xE; 0; 0; yBÞ; ð7Þ

where r ¼ ðx; y; zÞ. Our stability analysis is limited to the
SU(2) gauge group when fabc ¼ ϵabc with a, b ¼ 1, 2, 3.
Using Eqs. (3), one finds that the only nonvanishing
elements of the tensor F̄μν

a corresponding to the potential
(7) are F̄x0

1 ¼ −F̄0x
1 ¼ E and F̄zy

1 ¼ −F̄yz
1 ¼ B, that is

Eaðt; rÞ ¼ δa1ðE; 0; 0Þ Baðt; rÞ ¼ δa1ðB; 0; 0Þ: ð8Þ

The potential (7) solves the equations of motion (1) with
vanishing current. The non-Abelian terms disappear
because there is only one color component. The potential
satisfies the Lorenz gauge condition ∂μĀ

μ
a ¼ 0.

We note that the electric and magnetic fields (8) are
of the same color. If the potential is chosen, for example,
as Āμ

aðt; rÞ ¼ δa1ð−xE; 0; 0; 0Þ þ δa2ð0; 0; 0; yBÞ, then ex-
cept the uniform electric and magnetic fields of the colors 1
and 2, respectively, there is the nonuniform electric
field along the axis z of color 3 corresponding to
F̄0z
3 ¼ −gxyEB ¼ −F̄z0

3 .
When the electric and magnetic fields are studied

separately, the uniform electric and magnetic fields can
occur not only due to potentials linearly depending on
coordinates as in the Abelian theory, but also due to
nonlinear terms of the strength tensor (2) [6]. However,
there is no analogous non-Abelian configuration that
generates only parallel and uniform electric and mag-
netic fields. The reason is as follows. The non-Abelian
contributions to the electric and magnetic fields in the
SU(2) Yang-Mills theory are Ei

a ¼ gϵabcĀi
bĀ

0
c and Bi

a ¼
gϵijkϵabcĀj

bĀ
k
c. To get the electric and magnetic fields along

the axis x there must be nonvanishing components of
Ā0
a; Āx

a and Āy
a; Āz

a. The potentials Ā0
a and Āx

a must be of
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different colors and the same holds for Āy
a and Āz

a. If we
choose Ā0

2; Ā
x
3 and Āy

2; Ā
z
3 we get the nonzero electric and

magnetic fields Ex
1 and B

x
1, but additionally there appear the

fields Ez
1 and Bz

1. If we choose Ā
0
2; Ā

x
3 and Āy

1; Ā
z
2 there are

except the fields Ex
1 and Bx

3 also Ey
3, B

z
2, and By

1. So, one
observes that there is no way to have the parallel electric

and magnetic fields and no other fields. We conclude that
the potential (7) is the unique configuration with the
constant and uniform electric and magnetic fields along
the axis x.
Let us now consider a stability of the configuration (7).

The linearized Yang-Mills equation (6) is

□aμa þ 2gϵab1ðxE∂0 − By∂zÞaμb − 2gϵab1ðEδμ0axb þ Eδμxa0b þ Bδμyazb − BδμzaybÞ þ g2ðE2x2 − B2y2Þϵac1ϵcb1aμb ¼ 0: ð9Þ

Defining the functions

T� ¼ a02 � ia03; X� ¼ ax2 � iax3; Y� ¼ ay2 � iay3; Z� ¼ az2 � iaz3; ð10Þ

Eq. (9) provides

□Tþ − 2igðxE∂0 − By∂zÞTþ þ 2igEXþ − g2ðE2x2 − B2y2ÞTþ ¼ 0; ð11Þ

□Xþ − 2igðxE∂0 − By∂zÞXþ þ 2igETþ − g2ðE2x2 − B2y2ÞXþ ¼ 0; ð12Þ

□T− þ 2igðxE∂0 − By∂zÞT− − 2igEX− − g2ðE2x2 − B2y2ÞT− ¼ 0; ð13Þ

□X− þ 2igðxE∂0 − By∂zÞX− − 2igET− − g2ðE2x2 − B2y2ÞX− ¼ 0; ð14Þ

□Yþ − 2igðxE∂0 − By∂zÞYþ þ 2igBZþ − g2ðE2x2 − B2y2ÞYþ ¼ 0; ð15Þ

□Zþ − 2igðxE∂0 − By∂zÞZþ − 2igBYþ − g2ðE2x2 − B2y2ÞZþ ¼ 0; ð16Þ

□Y− þ 2igðxE∂0 − By∂zÞY− − 2igBZ− − g2ðE2x2 − B2y2ÞY− ¼ 0; ð17Þ

□Z− þ 2igðxE∂0 − By∂zÞZ− þ 2igBY− − g2ðE2x2 − B2y2ÞZ− ¼ 0: ð18Þ

To diagonalize Eqs. (11)–(18), we introduce the
functions

G� ≡ Tþ � Xþ; H� ≡ T− � X−;

U� ≡ Yþ � iZþ; W� ≡ Y− � iZ−; ð19Þ
and assuming that the functions aμa depend on t, z as
e−iðωt−kzzÞ, Eqs. (11)–(18) yield�
−
∂
2

∂x2
−

∂
2

∂y2
−ðωþgExÞ2þðkz−gByÞ2þ2igE

�
Gþ¼0;

ð20Þ�
−
∂
2

∂x2
−

∂
2

∂y2
−ðωþgExÞ2þðkz−gByÞ2−2igE

�
G−¼0;

ð21Þ
�
−
∂
2

∂x2
−

∂
2

∂y2
−ðω−gExÞ2þðkzþgByÞ2−2igE

�
Hþ¼0;

ð22Þ

�
−
∂
2

∂x2
−

∂
2

∂y2
−ðω−gExÞ2þðkzþgByÞ2þ2igE

�
H−¼0;

ð23Þ�
−
∂
2

∂x2
−

∂
2

∂y2
−ðωþgExÞ2þðkz−gByÞ2þ2gB

�
Uþ¼0;

ð24Þ�
−
∂
2

∂x2
−

∂
2

∂y2
−ðωþgExÞ2þðkz−gByÞ2−2gB

�
U−¼0;

ð25Þ�
−
∂
2

∂x2
−

∂
2

∂y2
−ðω−gExÞ2þðkzþgByÞ2−2gB

�
Wþ¼0;

ð26Þ
�
−
∂
2

∂x2
−

∂
2

∂y2
−ðω−gExÞ2þðkzþgByÞ2þ2gB

�
W−¼0:

ð27Þ
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Equations (20)–(27) can be solved by the variable
separation method. We solve, for example, Eqs. (24) and
(25). Assuming that

U�ðx; yÞ ¼ U�
E ðxÞU�

B ðyÞ; ð28Þ
one finds two equations

�
C�
U −

∂
2

∂x2
− g2E2

�
ω

gE
þ x

�
2
�
U�

E ðxÞ ¼ 0; ð29Þ

�
−C�

U � 2gB −
∂
2

∂y2
þ g2B2

�
kz
gB

− y
�

2
�
U�

B ðyÞ ¼ 0; ð30Þ

where C�
U is the separation constant.

Under the replacements

C�
U ∓ 2gB → 2mE; gB → mω̄;

kz
gB

→ y0; ð31Þ

where E is the energy of harmonic oscillator and ω̄ is the
frequency of its classical counterpart, Eq. (30) coincides
with the Schrödinger equation of the harmonic oscillator,
which can be written as

�
−2mE þm2ω̄2ðy0 − yÞ2 − d2

dy2

�
φðyÞ ¼ 0: ð32Þ

Since the oscillator energy is quantized as

En ¼ ω̄

�
nþ 1

2

�
; n ¼ 0; 1; 2;…; ð33Þ

the separation constant equals

C�
U ¼ gBð2nþ 1Þ � 2gB; ð34Þ

and the solutions are well known to be

U�
B ðyÞ ∼Hnðaðy − y0ÞÞe−1

2
a2ðy−y0Þ2 ; ð35Þ

where a≡ ffiffiffiffiffiffi
gB

p
, y0 ≡ kz

gB, and Hn is the Hermite
polynomial.
Under the replacements

C�
U → −2mE; gE → mω̄;

ω

gE
→ x0; ð36Þ

Eq. (29) coincides with the Schrödinger equation of the
inverted harmonic oscillator, which can be written as

�
−2mE −m2ω̄2ðx0 − xÞ2 − d2

dx2

�
ϕðxÞ ¼ 0: ð37Þ

As discussed in detail in [10], there are no normalizable
solutions of the Schrödinger equation of the inverted
harmonic oscillator. The solutions run away either to plus

or minus infinity and thus the configuration of the constant
electric field is genuinely unstable.

IV. NON-ABELIAN CONFIGURATIONS OF
UNIFORM FIELDS

A. Magnetic field

A non-Abelian configuration of Āμ
a that produces a

constant homogeneous magnetic field Ba ¼ δa1ðB; 0; 0Þ is

Āμ
a ¼

2
664
0 0 0 0

0 0 0 λ
ffiffiffiffiffiffiffiffi
B=g

p
0 0 1

λ

ffiffiffiffiffiffiffiffi
B=g

p
0

3
775; ð38Þ

where the Lorentz index μ numerates the columns and the
color index a numerates the rows; λ is an arbitrary real
number different from zero. In the first paper [6], we studied
in detail the special case of the potential (38) with λ ¼ 1.
Here we briefly discuss the general case of arbitrary λ.
The potential (38), which obviously satisfies the Lorenz

gauge condition, does not solve the Yang-Mills equation (1)
with jμa ¼ 0. Computing D̄ab

μ F̄μν
b , one finds2

664
0 0 0 0

0 0 0 1
λ g

1=2B3=2

0 0 λg1=2B3=2 0

3
775 ¼ jμa: ð39Þ

Following [11], we assume that the current, which enters
the Yang-Mills equation, equals the left-hand side of
Eq. (39). Then, the potential (38) solves the Yang-Mills
equation (1).
Since the current jμ in the fundamental representation

transforms under a gauge transformationU as jμ → UjμU†,
the quantity Tr½jμjμ� is a gauge invariant and so is jμajaμ. The
current (39) yields

jμajaμ ¼ −
�
1

λ2
þ λ2

�
gB3: ð40Þ

Because the gauge invariant (40) depends on ðλ−2 þ λ2Þ the
potential configurations (38) of different ðλ−2 þ λ2Þ are
gauge inequivalent [7], even so the configurations produce
the same field strength and the same energy density, see
Sec. V. Therefore, it is of physical interest to analyze the
stability of the configuration (38) of arbitrary λ.
The equation of motion of the small field aμa (6) is found

to be

□aμa þ 2gAðλ−1ϵa3b∂y þ λϵa2b∂zÞaμb
− g2A2ðλ2ϵa2eϵe2b þ λ−2ϵa3eϵe3bÞaμb
þ 2g2A2ϵa1bðδμyazb − δμzaybÞ ¼ 0; ð41Þ

where A≡ ffiffiffiffiffiffiffiffi
B=g

p
.
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Assuming that aμaðt; x; y; zÞ ¼ e−iðωt−k·rÞaμa, where k ¼
ðkx; ky; kzÞ and r ¼ ðx; y; zÞ, Eqs. (41) are changed into the
following set of algebraic equations:

M̂t
Ba⃗

t ¼ 0; M̂x
Ba⃗

x ¼ 0; M̂yz
B a⃗

yz ¼ 0; ð42Þ
where a⃗t and a⃗x represent three colors of the corresponding
components of the four-vector aμ. The vector a⃗yz is six
dimensional; it includes three colors of ay and az. The
matrices M̂t

B and M̂x
B, which are equal to each other, are

3 × 3 and M̂yz
B is 6 × 6. The explicit form of the matrices for

λ ¼ 1 is given in [6].
The dispersion equations read

det M̂t
B ¼ 0; det M̂x

B ¼ 0; det M̂yz
B ¼ 0: ð43Þ

In [6] we have found a complete set of analytical solutions
of Eqs. (43) for λ ¼ 1. The solutions of the first two
equations are always stable, while there is an unstable
solution (that is, with positive imaginary part) of the third
equation. Since the analysis of the general case of λ ≠ 1 is
more complex, it is limited here to k ¼ 0, which is
sufficient to show that the system is unstable.
One finds three solutions of the first two identical

equations (43), which are

ω2
0 ¼ λ2gB; ω2þ ¼ 1þ λ4

λ2
gB; ω2

− ¼ 1

λ2
gB: ð44Þ

Since ω2
0, ω

2þ, and ω2
− are real and positive, similar to the

special case λ ¼ 1, there are all stable modes corresponding
to these solutions.
The solutions of the third equation (43) read

ω2
1 ¼

1þ λ4

λ2
gB; ω2

2 ¼
1þ λ4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 14λ4 þ λ8

p

2λ2
gB;

ω2
3 ¼

1þ λ4 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 14λ4 þ λ8

p

2λ2
gB: ð45Þ

One checks that ω2
3 < 0 for λ2 > 0. Therefore, as in the

special case λ ¼ 1, there is the unstable mode associated
with the overdamped mode.

B. Electric field

A non-Abelian configuration of Aμ
a, which produces a

constant homogeneous electric field along the axis x is

Āμ
a ¼

2
664

0 0 0 0

λ
ffiffiffiffiffiffiffiffi
E=g

p
0 0 0

0 1
λ

ffiffiffiffiffiffiffiffi
E=g

p
0 0

3
775; ð46Þ

where, as previously, λ is an arbitrary real number different
from zero. One checks that the potential (46) yields the
electric field Ea ¼ δa1ð−E; 0; 0Þ. In our first paper [6],
where we studied in detail the special case of the potential
(46) with λ ¼ 1, we incorrectly wrote that the field is of

opposite direction, that isEa ¼ δa1ðE; 0; 0Þ. Since the error
does not influence our analysis in any way, we also use the
potential (46) here to simplify a comparison of the results
and to avoid confusion. However, we discuss the general
case of arbitrary λ.
The potential (46), which obviously satisfies the Lorenz

gauge condition, does not solve the Yang-Mills equation (1)
with jμa ¼ 0. Instead, one gets2

64
0 0 0 0

1
λ g

1=2E3=2 0 0 0

0 −λg1=2E3=2 0 0

3
75 ¼ jμa: ð47Þ

As in the case of magnetic field, we assume that the current,
which enters the Yang-Mills equation, equals the left-
hand side of Eq. (47). Then, the potential (46) solves the
Yang-Mills equation (1).
The current (39) provides the gauge invariant

jμajaμ ¼
�
1

λ2
− λ2

�
gE3; ð48Þ

and thus the potential configurations (46) of different
ðλ−2 − λ2Þ are gauge inequivalent [7]; even so, the con-
figurations produce the same field strength and the same
energy density.
The equation of motion of the small field aμa (6) is found

to be

□aμa þ 2gAðλϵa2b∂0 þ λ−1ϵa3b∂xÞaμb
þ g2A2ðλ2ϵa2eϵe2b − λ−2ϵa3eϵe3bÞaμb
þ 2g2A2ϵa1bðδμ0axb þ δμxa0bÞ ¼ 0; ð49Þ

where A≡ ffiffiffiffiffiffiffiffi
E=g

p
.

Assuming that aμaðt; x; y; zÞ ¼ e−iðωt−k·rÞaμa, where k ¼
ðkx; ky; kzÞ and r ¼ ðx; y; zÞ, Eqs. (49) are changed into the
following set of algebraic equations:

M̂tx
E a⃗

tx ¼ 0; M̂y
Ea⃗

y ¼ 0; M̂z
Ea⃗

z ¼ 0: ð50Þ
The second and third equation are identical to each other. In
[6] we have found a complete set of analytical solutions of
the dispersion equations

det M̂tx
E ¼ 0; det M̂y

E ¼ 0; det M̂z
E ¼ 0 ð51Þ

for λ ¼ 1. There are unstable solutions of all three equa-
tions. The analysis of the general case of λ ≠ 1 is limited
here to k ¼ 0, but it still reveals that the system is unstable.
The three solutions of the second and third identical

equations (51) are

ω2
1 ¼

1

2

�
2λ2 þ 1

λ2
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
8þ 1

λ4

r �
gE;

ω2
2 ¼

1

λ2
gE; ω2

3 ¼
1

2

�
2λ2 þ 1

λ2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
8þ 1

λ4

r �
gE: ð52Þ
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As one observes ω2
3 < 0 for λ2 < 1 and then there is the

unstable mode.
The first equation (51) is effectively cubic in ω2. There

are one real and two complex solutions which can be found
using the Cardano formula. The solutions are

ω2
1 ¼ uþ v −

1

3
a2;

ω2
2 ¼ −

1

2
ðuþ vÞ þ i

ffiffiffi
3

p

2
ðu − vÞ − 1

3
a2;

ω2
3 ¼ −

1

2
ðuþ vÞ − i

ffiffiffi
3

p

2
ðu − vÞ − 1

3
a2; ð53Þ

with

u≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þp3

27

r
3

s
; v≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þp3

27

r
3

s
; ð54Þ

and

p≡−
1−7λ4þλ8

3λ4
g2E2; q≡2−21λ4þ141λ8þ2λ12

27λ6
g3E3;

a2≡−
2ð1þλ4Þ

λ2
gE: ð55Þ

One checks that ω2
1 < 0 for λ2 > 1 and then there is the

unstable mode. Since the imaginary parts of ω2
2 and ω2

3 are
nonzero, there are also unstable modes related to these
solutions. So, we conclude that the configuration of electric
field generated by the potential (46) is severely unstable.

V. ENERGY-MOMENTUM TENSOR

Solutions of the Yang-Mills equations do not have a
direct physical meaning because of their dependence on a
chosen gauge. However, there are gauge invariant quan-
tities that are determined by the solutions. The energy-
momentum tensor of chromodynamic fields is a particu-
larly important example as it can tell us how system’s
energy density and other tensors’ components change in
time. In this way we can observe, for example, whether the
system evolves toward thermodynamic equilibrium.
As discussed in the review article [12], the energy-

momentum tensor of pure Yang-Mills theory, which is
gauge invariant, divergenceless, symmetric, and traceless, is

Tμν ¼ 2Tr

�
FμρFρ

ν þ 1

4
gμνFστFστ

�

¼ Fμρ
a Fρa

ν þ 1

4
gμνFστ

a Fστ a: ð56Þ

The expressions after the first and second equality are
written in the fundamental and adjoint representation,
respectively. Using the formulas (3), the elements of the

energy-momentum tensor (56) can be expressed through the
electric andmagnetic fields.We are particularly interested in
the diagonal elements: energy density ε and pressures pL
and pT , which are given as

ε≡ T00 ¼ 1

2
ðEa ·Ea þ Ba · BaÞ; ð57Þ

pL ≡ Txx ¼ −Ex
aEx

a − Bx
aBx

a þ ε; ð58Þ

pT ≡ Tyy ¼ −Ey
aE

y
a − By

aB
y
a þ ε: ð59Þ

Since we consider the background of electric and magnetic
fields along the axis x, the subscripts L and T refer the this
direction.

A. Gauge dependence

The energy-momentum tensor (56) is gauge invariant
because the strength tensor in the fundamental representa-
tion transforms under the gauge transformation U as

Fμν → UFμνU†: ð60Þ

One wonders whether the tensor (56) is still gauge invariant
within the linearized chromodynamics where nonlinear
terms, which contribute to the strength tensor Fμν, are
neglected.
The gauge potential, which is the sum of the background

and fluctuation potentials, transforms as

Aμ ¼ Aμ þ aμ → UĀμU† þ UaμU† þ i
g
U∂

μU†; ð61Þ

but there is an ambiguity how to transform Āμ and aμ

separately. However, the background potential Āμ should
behave as the gauge potential independent of the fluc-
tuation potential aμ which, in particular, can vanish.
Therefore, the background potential Āμ transforms as a
gauge potential, which in turn dictates the transformation of
the fluctuation potential aμ. Consequently, the transforma-
tion is

Āμ → UĀμU† þ i
g
U∂

μU†; aμ → UaμU†: ð62Þ

We note that the transformation (62) is used in the back-
ground field method, see, e.g., Ref. [13].
One observes that the strength tensor corresponding to

Aμ ¼ Āμ þ aμ, which equals

Fμν¼ F̄μνþ∂
μaν−∂

νaμ− ig½aμ;aν�− ig½Āμ;aν�− ig½aμ;Āν�;
ð63Þ

transforms according to Eq. (60) even when the term
quadratic in aμ is neglected. The point is that the
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term ½aμ; aν� transforms as ½aμ; aν� → U½aμ; aν�U†.
Consequently, the quantity Tr½FμλFρσ� and, in particular,
the energy-momentum tensor (56) are gauge invariant
under the transformation (62).

B. Energy density and pressures of
stable and unstable modes

We consider here, as an example, the energy density (57)
and pressures (58) and (59) corresponding to the two
modes of the potential fluctuating around the Abelian
configuration of uniform and constant magnetic field B
along the axis x which were studied in [6] and denoted as
U�. The mode Uþ is always stable, while the mode U− is
the well-known Nielsen-Olesen instability [14] for k2x < gB
and n ¼ 0. Otherwise, the mode U− is stable.
The modes are found in terms of the functionsU� but the

energy-momentum tensor (56) is expressed through the
gauge potential. So, we have to reconstruct the potential.
Keeping in mind the definitions (10) and (19), one finds

Uþ ¼ ay2 þ iay3 þ iaz2 − az3; ð64Þ

U− ¼ ay2 þ iay3 − iaz2 þ az3: ð65Þ

Demanding that U− ¼ W� ¼ 0 for the mode Uþ and that
Uþ ¼ W� ¼ 0 for the mode U−, one finds the gauge
potentials

Aμ
a ¼

2
64
0 0 0 yB

0 0 f −if
0 0 −if −f

3
75; Aμ

a ¼

2
64
0 0 0 yB

0 0 f if

0 0 −if f

3
75; ð66Þ

which correspond to the mode Uþ or U−. The function f
equals hðyÞe−iðωt−kxx−kzzÞ for the stable mode Uþ and
hðyÞeγteiðkxxþkzzÞ for unstable mode U−. The parameters
ω, γ are real. The function hðyÞ will be defined below. We
note that the columns in Eq. (66) correspond to Cartesian
components of the fields, while the rows correspond to the
color components.
Keeping in mind that only real parts of the potentials (66)

have a physical meaning, the electric and magnetic fields
associated with the Uþ and U− modes are, respectively,

Ea ¼

2
64
0 0 0

0 −∂tfR −∂tfI

0 −∂tfI ∂
tfR

3
75; Ba ¼

2
64

B 0 0

−∂yfI þ ∂
zfR − gyBfI ∂

xfI −∂xfR

∂
yfR þ ∂

zfI þ gyBfR −∂xfR −∂xfI

3
75; ð67Þ

Ea ¼

2
64
0 0 0

0 −∂tfR ∂
tfI

0 −∂tfI −∂tfR

3
75; Ba ¼

2
64

B 0 0

∂
yfI þ ∂

zfR − gyBfI ∂
xfI −∂xfR

−∂yfR þ ∂
zfI þ gyBfR ∂

xfR −∂xfI

3
75; ð68Þ

where fR ≡ℜf and fI ≡ ℑf. The terms quadratic in f are
neglected in Eqs. (67) and (68).
The energy density and longitudinal and transverse

pressures associated with the mode Uþ are

ε¼1

2
B2þð∂tfRÞ2þð∂tfIÞ2þð∂xfIÞ2þð∂xfRÞ2

þ1

2
ð−∂yfIþ∂

zfR−gyBfIÞ2þ1

2
ð∂yfR−∂

zfIþgyBfRÞ2;
ð69Þ

pL ¼ −B2 − ð−∂yfI þ ∂
zfR − gyBfIÞ2

− ð∂yfR þ ∂
zfI þ gyBfRÞ2 þ ε; ð70Þ

pT ¼ −ð∂tfRÞ2 − ð∂tfIÞ2 − ð∂xfIÞ2 − ð∂xfRÞ2 þ ε; ð71Þ

and those of the mode U− read

ε ¼ 1

2
B2 þ ð∂tfRÞ2 þ ð∂tfIÞ2 þ ð∂xfIÞ2

þ ð∂xfRÞ2 þ 1

2
ð∂yfI þ ∂

zfR − gyBfIÞ2

þ 1

2
ð−∂yfR þ ∂

zfI þ gyBfRÞ2; ð72Þ

pL ¼ −B2 − ð∂yfI þ ∂
zfR − gyBfIÞ2

− ð−∂yfR þ ∂
zfI þ gyBfRÞ2 þ ε; ð73Þ

pT ¼ −ð∂tfRÞ2 − ð∂tfIÞ2 − ð∂xfIÞ2 − ð∂xfRÞ2 þ ε: ð74Þ

We note that all the terms, which enter the electric and
magnetic fields (67) and (68), are kept here to have gauge
invariant expressions.
Further on, we consider the lowest energy modes U�

when hðyÞ ¼ δe−
gBy2

2 with δ being the fluctuation’s ampli-
tude of the dimension of mass which is small, that is
δ ≪

ffiffiffiffi
B

p
. For simplicity, we also put kx ¼ kz ¼ 0 and then
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γ2 ¼ gB, ω2 ¼ 3gB [6]. The energy density and longi-
tudinal and transverse pressures of the stable mode are

ε ¼ 1

2
B2 þ gBδ2ð3þ 2gy2BÞe−gBy2 ; ð75Þ

pL ¼ −
1

2
B2 þ gBδ2ð3 − 2gy2BÞe−gBy2 ; ð76Þ

pT ¼ 1

2
B2 þ 2g2y2B2δ2e−gBy

2

; ð77Þ
and those of the unstable mode equal

ε ¼ 1

2
B2 þ gBδ2e−gBy

2

e2
ffiffiffiffi
gB

p
t; ð78Þ

pL ¼ −
1

2
B2 þ gBδ2e−gBy

2

e2
ffiffiffiffi
gB

p
t; ð79Þ

pT ¼ 1

2
B2: ð80Þ

We see that ε, pL, and pT are time independent for the
stable mode, but exponentially grow in the case of
instability. We also observe that the growing unstable
mode tends to reduce the negative value of pL, which
can be interpreted as a beginning of the evolution toward
equilibrium.
The expressions (78)–(80) should be treatedwith caution.

One checks that the biggest terms, which are neglected, are
of the order gBδ2. Consequently, they are as big as the terms
that are kept in ε, pL, and pT . If we consistently neglect the
terms of the order gBδ2, the energy density and longitudinal
pressure of the stable and unstable modes are determined
solely by the background potential. We note that the term
gBy2e−gBy

2

is always smaller or equal to 1=e.

VI. SUMMARY, CONCLUSIONS, AND OUTLOOK

We have discussed the system of classical electric and
magnetic fields that are parallel to each other, constant, and
uniform. Such a system can be generated only by the
single-color potential linearly depending on coordinates,

which is well known in the Abelian theory. In contrast to
the electric or magnetic fields, which occur separately, there
is no non-Abelian configuration where the fields are
generated by the multicolor noncommuting constant uni-
form potentials. We have performed a linear stability
analysis of the system of parallel electric and magnetic
fields, showing that the system’s dynamics is dominated by
the electric field. The solutions of linearized Yang-Mills
equations run away either to plus or minus infinity, which
makes the system unstable.
There is a whole class of non-Abelian potentials of both

electric and magnetic fields that correspond to the same
field strength and energy density but are still gauge
inequivalent. We have shown that all these field configu-
rations are unstable in the long wavelength limit.
Wehave discussed thegaugedependence of our results and

we have shown that in spite of the linearization the chromo-
dynamic strength tensor transforms covariantly under gauge
transformations. Therefore, the energy-momentum tensor,
which is obtained from the strength tensor, is gauge invariant.
We have demonstrated that the tensor corresponding to the
unstable Nielsen-Olesen mode exponentially grows in time,
starting an evolution toward equilibrium.
With the present paper we close our discussion of

constant and uniform chromodynamic fields. The next
steps are field configurations that are more relevant for
relativistic heavy-ion collisions. We are going to perform a
stability analysis of the background fields, which are
invariant under Lorentz boosts in one direction, with
fluctuations that break the Lorentz invariance. This is the
configuration where the instability was found in [3,4].
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