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Stability of initial glasma fields
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A system of gluon fields produced in the earliest phase of relativistic heavy-ion collisions, which is called
glasma, can be described in terms of classical fields. Initially there are chromoelectric and chromomagnetic
fields along the collision axis. A linear stability analysis of these fields is performed, assuming that the fields
are space-time uniform and using the SU(2) gauge group. We apply Milne coordinates and the gauge condition,
which are usually used in studies of glasma. The chromoelectric field is in the Abelian configuration with the
corresponding potential linearly depending on coordinates, but the chromomagnetic field is in the non-Abelian
configuration generated by the potential of noncommuting components. The chromomagnetic field is found to be
unstable, and the growth rate of the unstable mode is derived. Our findings are critically debated and confronted
with the numerical simulations by Romatschke and Venugopalan, who found that the evolving glasma is unstable
due to the Weibel instability, which is well known in electromagnetic plasma.
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I. INTRODUCTION

The color glass condensate (CGC) approach (see, e.g., the
review articles [1,2]) is commonly applied to study the early
phase of relativistic heavy-ion collisions at the highest acces-
sible energies at the Relativistic Heavy Ion Collider (RHIC)
and the Large Hadron Collider (LHC). Within the approach,
valence quarks of the colliding nuclei act as color charge
sources of long-wavelength chromodynamic fields. Such a
system of gluon fields created in the nuclear collision is called
glasma, and the fields can be approximately treated as clas-
sical because of their large occupation numbers. Initially the
system is dominated by the chromoelectric and chromomag-
netic fields parallel to the beam axis. Later on, transverse
fields show up and the system evolves toward thermodynamic
equilibrium.

Numerical simulations of the evolving glasma [3,4]
showed that the system is unstable. The exponentially grow-
ing mode was identified with the Weibel instability [5], also
called filamentation, which is well-known in the physics of
electromagnetic plasma. The relevance of the chromodynamic
Weibel instability for quark-gluon plasma produced in rel-
ativistic heavy-ion collisions was argued long ago [6] and
studied in detail later on; see Ref. [7]. A sufficient condi-
tion for the occurrence of the instability is anisotropy of the

*sylwia.bazak@gmail.com
†stanislaw.mrowczynski@ncbj.gov.pl

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by SCOAP3.

momentum distribution of plasma charged constituents. They
generate a magnetic field, which in turn affects their motion
and, as explained in detail in [7], energy is transferred from
the particles to the exponentially growing field. The interplay
of particles and fields is crucial for the Weibel instability,
but, in principle, there are no particles in the glasma—
quasiparticles are expected to appear later on as the system
evolves towards thermodynamic equilibrium. Nevertheless,
high-frequency modes of classical fields are often treated as
quasiparticles, and such a treatment led to the interpretation
of the instability found in [3,4] as the Weibel mode.

In the early days of quantum chromodynamics (QCD), var-
ious configurations of classical chromodynamic fields were
found to be unstable; see [8–12]. This observation was a
starting point of a whole series of papers [13–17] where the
problem of glasma stability was studied. Uniform chromo-
electric and chromomagnetic fields along the beam direction
were considered, and it was argued [14–17] that the instability
found in the simulations [3,4] is not the Weibel but rather
Nielsen-Olesen instability [18] of spin 1 charged particles
circulating in a uniform chromomagnetic field. There was
also considered [16] a possible role of the vacuum instabil-
ity caused by a strong chromoelectric field which generates
particle-antiparticle pairs due to the Schwinger mechanism
[19].

An important aspect of the glasma chromomagnetic field
was missed in the studies [14–17]. Uniform chromoelectric
and chromomagnetic fields are generated by the poten-
tials that are either of single color and depend linearly
on coordinates, or by uniform multicolor potentials whose
components do not commute with each other. We refer to
the former configurations—fully analogous to those known
from electrodynamics—as Abelian and the latter ones as
non-Abelian. It is important to note that the Abelian and
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non-Abelian configurations are physically nonequivalent as
they cannot be related to each other by a gauge transformation
[20]. We also note that although the uniform chromomagnetic
field is unstable in both Abelian and non-Abelian configura-
tions, the characteristics of the unstable modes are different
[21]. We will show in Sec. II that the initial chromoelectric
glasma field is in the Abelian configuration, but the chro-
momagnetic one is the non-Abelian one. In Refs. [14–17],
the chromoelectric and chromomagnetic fields were both as-
sumed to be in the Abelian configuration.

We have undertaken an effort to systematically study the
stability of classical glasma fields. We have performed [21,22]
a linear stability analysis of space-time uniform chromoelec-
tric and chromomagnetic fields in the Abelian configurations,
which were studied repeatedly starting with Refs. [10,11],
and in the non-Abelian configurations, which were briefly
discussed in [12] (see also [23–25]), but not systematically
studied. We have derived a complete spectrum of small
fluctuations around the background fields which obey the
linearized Yang-Mills equations. The spectra of Abelian and
non-Abelian configurations are similar but different and they
both include unstable modes. We have also discussed paral-
lel chromoelectric and chromomagnetic fields, which occur
simultaneously.

The aim of this work is to perform a stability analysis of
uniform chromodynamic fields that are relevant for the initial
glasma state and confront the results with the simulations
[3,4]. We use the Milne—also known as comoving—
coordinates, and we apply a specific Fock-Schwinger gauge
condition that is usually used in studies of glasma. We note
that in our previous works [21,22], we have been using
Minkowski coordinates and the background gauge, which is
convenient to compare various systems under consideration.

Our paper is organized as follows. In Sec. II we discuss
an ansatz [26] that determines a structure of glasma field. We
show that the initial chromoelectric field is in the Abelian con-
figuration while the chromomagnetic field is generated by the
genuine non-Abelian potential. Yang-Mills equations in Milne
coordinates are discussed in Sec. III, where we also derive the
equations linearized in a small deviation from the background
potential. In Secs. IV and V, a linear stability analysis is
performed of the initial chromomagnetic and chromoelectric
fields, respectively. The initial glasma fields are treated as
stationary, but to check the reliability of the assumption, we
consider in Sec. VI the evolution of glasma fields, using the
proper time expansion proposed in [27] and developed in [28].
In Sec. VII, our findings are critically debated and discussed
in the context of the simulations [3,4,29].

Throughout the paper, we use Minkowski, light-cone, and
Milne coordinates

(t, x⊥, z), (x+, x⊥, x−), (τ, x⊥, η), (1)

where x± ≡ (t ± z)/
√

2, τ ≡ √
t2 − z2 = √

2x+x−, η ≡ ln
(x+/x−)/2, and x⊥ = (x, y). The indices μ, ν, which label
coordinates of spacetime, are μ, ν = t, x, y, z in the case of
Minkowski coordinates and μ, ν = τ, x, y, η in the case of
Milne ones. The indices α, β = x, y, z and i, j = x, y label,
respectively, the Cartesian spatial coordinates and those of the
x-y plane, which is transverse to the beam direction along the

z-axis. The space-time metric tensor gμν is diagonal, and the
diagonal elements are (+1,−1,−1,−1) in Minkowski and
(+1,−1,−1,−τ 2) in Milne coordinates. The indices a, b =
1, 2, . . . , N2

c − 1 numerate color components in the adjoint
representation of the SU(Nc) gauge group. We omit hence-
forth the prefix “chromo” when referring to chromoelectric
or chromomagnetic fields. Since we study chromodynamics
only, this should not be confusing.

II. GLASMA FIELDS

We consider a collision of two heavy ions moving towards
each other along the z-axis with the speed of light and col-
liding at t = z = 0. The vector potential of the gluon field is
described with the ansatz [26]

A+(x) = �(x+)�(x−) x+α(τ, x⊥),

A−(x) = −�(x+)�(x−) x−α(τ, x⊥),

Ai(x) = �(x+)�(x−)αi
⊥(τ, x⊥) + �(−x+)�(x−)β i

1(x⊥)

+�(x+)�(−x−)β i
2(x⊥), (2)

where the functions β i
1(x−, x⊥) and β i

2(x+, x⊥) represent
the precollision potentials, and the functions α(τ, x⊥) and
αi

⊥(τ, x⊥) give the postcollision potentials, i, j = x, y.
Components of the potential (2) in the forward light-cone

(x± � 0), where glasma is present, are⎧⎨
⎩

At (x) = z α(τ, x⊥),
Az(x) = t α(τ, x⊥),
Ai(x) = αi

⊥(τ, x⊥),

⎧⎨
⎩

Aτ (x) = 0,

Aη(x) = α(τ, x⊥),
Ai(x) = αi

⊥(τ, x⊥),
(3)

in Minkowski and Milne coordinates, respectively.
The potential (2) satisfies the specific Fock-Schwinger

gauge condition, which, written in the Minkowski, light-cone,
and Milne coordinate systems, is

tAt − zAz = 0, x−A+ + x+A− = 0, Aτ = 0. (4)

In the forward light-cone, the vector potential satisfies
the sourceless Yang-Mills equations, but the sources enter
through the boundary conditions that connect the pre- and
postcollision potentials. The conditions read [26]

αi
⊥(0, x⊥) = β i

1(x⊥) + β i
2(x⊥), (5)

α(0, x⊥) = − ig

2

[
β i

1(x⊥), β i
2(x⊥)

]
. (6)

In Minkowski coordinates, the electric and magnetic fields
are given as

Eα = Fαt , Bα = 1
2εαβγ F γ β, (7)

where α, β, γ = x, y, z, the strength tensor is

Fμν = ∂μAν − ∂νAμ − ig[Aμ, Aν]. (8)

and εαβγ is the Levi-Civita fully antisymmetric tensor.
Since t = τ cosh η and z = τ sinh η, the components At

and Az given by Eq. (3) vanish at τ = 0, as α(τ, x⊥) is as-
sumed to be regular at τ = 0. However, the derivatives of At

and Az with respect to z and t , respectively, are finite at τ = 0.
Therefore, the only nonzero components of the electric and
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magnetic fields at τ = 0 are

E (x⊥) ≡ Ez(0, x⊥) = −2α(0, x⊥), (9)

B(x⊥) ≡ Bz(0, x⊥) = −∂yα
x
⊥(0, x⊥) + ∂xα

y
⊥(0, x⊥)

− ig[αy
⊥(0, x⊥), αx

⊥(0, x⊥)]. (10)

When the precollision potentials β i
1 and β i

2 are uniform,
that is, independent of x⊥, the glasma initial potential is

At
a = z αa = g

2
z f abcβ i

1bβ
i
2c,

Az
a = t αa = g

2
t f abcβ i

1bβ
i
2c,

Ai
a = αi

⊥ a = β i
1a + β i

2a, (11)

which is written in the adjoint representation of the SU(Nc)
gauge group. The potential generates the initial electric and
magnetic fields, which are

Ea = −gf abcβ i
1bβ

i
2c, (12)

Ba = −gεzi j f abcβ i
1bβ

j
2c. (13)

Equations (11) clearly show that the initial uniform electric
field (12) is in an Abelian configuration, that is, it is generated
by the potential components At and Az linearly depending on
t and z, while the magnetic field (13) is in a non-Abelian
configuration, that is, it is generated by the uniform and non-
commuting potential components Ax and Ay.

One shows that the Abelian and non-Abelian configu-
rations of the same uniform electric or magnetic field are
physically nonequivalent by observing that the potential of the
Abelian configuration satisfies the Yang-Mills equations with
vanishing color current, while the potential of the non-Abelian
configuration can solve the Yang-Mills equations only with an
appropriately chosen color current. Since a nonzero current
cannot be nulled by gauge transformation, the Abelian and
non-Abelian configurations are nonequivalent. We will return
to this issue in Sec. IV.

III. LINEARIZED YANG-MILLS EQUATIONS IN MILNE
COORDINATES

In curvilinear coordinates, the Yang-Mills equations are

∇μFμν = jν, (14)

where ∇μ is the covariant derivative, which includes Christof-
fel symbols and the gauge potential,

Fμν ≡ ∇μAν − ∇νAμ, (15)

and jμ is the color current. In the adjoint representation of
SU(Nc) group, the covariant derivative acts on the vector
potential Aμ

a as

∇ab
μ Aν

b ≡ ∂μAν
a + �ν

μρAρ
a + gf abcAb

μAν
c , (16)

where �ν
μρ is the Christoffel symbol. We note that upper and

lower color indices are not distinguished from each other.
Since �μ

νρ = �μ
ρν , the strength tensor F a

μν equals

F a
μν = (∇μAν − ∇νAμ)a = ∂μAa

ν − ∂νAa
μ + gf abcAb

μAc
ν .

(17)

To derive an explicit form of the Yang-Mills equations in
Milne coordinates, we use the formula

∇μFμν = 1√−ḡ
Dμ(

√−ḡFμν ), (18)

where ḡ is the determinant of a metric tensor, which in the
case of Milne coordinates equals ḡ = −τ 2, and Dμ is the
covariant derivative, which includes the gauge potential but no
Christoffel symbol. The Yang-Mills equations can be written
as

(∇μFμν )a = 1

τ
∂μ

(
τ gμρgνσ F a

ρσ

) + ggμρgνσ f abcAb
μF c

ρσ = jνa ,

(19)

where the derivatives ∂μ but not ∂μ are used, and the strength
tensor is given by Eq. (17), which does not include Christoffel
symbols.

Since the Yang-Mills equations play a central role in our
analysis, we write them explicitly in the case of the SU(2)
gauge group, when f abc = εabc, and the gauge condition is
Aτ = 0. The equations read

−∂x∂τ Ax
a − ∂y∂τ Ay

a − 1

τ 2
∂η∂τ

(
τ 2Aη

a

) + gεabcAx
b∂τ Ax

c + gεabcAy
b∂τ Ay

c + gεabcAη

b∂τ

(
τ 2Aη

c

) = jτa , (20)

∂2
τ Ax

a + 1

τ
∂τ Ax

a − ∂y
(
∂yAx

a − ∂xAy
a − gεabcAy

bAx
c

) − 1

τ 2
∂η

(
∂ηAx

a − τ 2∂xAη
a − gτ 2εabcAη

bAx
c

)
+ gεabcAy

b

(
∂yAx

c − ∂xAy
c

) + gεabcAη

b

(
∂ηAx

c − τ 2∂xAη
c

) − g2
(
Ay

bAy
aAx

b − Ay
bAy

bAx
a + τ 2Aη

bAη
aAx

b − τ 2Aη

bAη

bAx
a

) = jx
a, (21)

∂2
τ Ay

a + 1

τ
∂τ Ay

a − ∂x
(
∂xAy

a − ∂yAx
a − gεabcAx

bAy
c

) − 1

τ 2
∂η

(
∂ηAy

a − τ 2∂yAη
a − gτ 2εabcAη

bAy
c

) + gεabcAx
b

(
∂xAy

c − ∂yAx
c

)
+ gεabcAη

b

(
∂ηAy

c − τ 2∂yAη
c

) − g2(Ax
bAx

aAy
b − Ax

bAx
bAy

a + τ 2Aη

bAη
aAy

b − τ 2Aη

bAη

bAy
a

) = jy
a, (22)

∂2
τ

(
τ 2Aη

a

) − 1

τ
∂τ

(
τ 2Aη

a

) − ∂x
(
τ 2∂xAη

a − ∂ηAx
a − gτ 2εabcAx

bAη
c

) − ∂y
(
τ 2∂yAη

a − ∂ηAy
a − gτ 2εabcAy

bAη
c

)
+ gεabcAx

b

(
τ 2∂xAη

c − ∂ηAx
c

) + gεabcAy
b

(
τ 2∂yAη

c − ∂ηAy
c

) + g2τ 2
( − Ax

bAx
aAη

b + Ax
bAx

bAη
a − Ay

bAy
aAη

b + Ay
bAy

bAη
a

) = τ 2 jηa . (23)

024903-3



BAZAK AND MRÓWCZYŃSKI PHYSICAL REVIEW C 109, 024903 (2024)

Now, we assume that the background potential Āμ
a solves the Yang-Mills equations, and we consider small fluctuations aμ

a
around Āμ

a . So, we define the potential

Aμ
a (τ, x, y, η) ≡ Āμ

a (τ, x, y, η) + aμ
a (τ, x, y, η), (24)

such that |Āμ
a (τ, x, y, η)| � |aμ

a (τ, x, y, η)|. Substituting the potential (24) into the Yang-Mills equations (20)–(23) and neglecting
the terms nonlinear in aμ

a , one finds

−∂x∂τ ax
a − ∂y∂τ ay

a − 1

τ 2
∂η∂τ

(
τ 2aη

a

) + gεabc
(
Āx

b∂τ ax
c + ax

b∂τ Āx
c + Āy

b∂τ ay
c + ay

b∂τ Āy
c + Āη

b∂τ (τ 2aη
c ) + aη

b∂τ (τ 2Āη
c )

) = 0, (25)

∂2
τ ax

a + 1

τ
∂τ ax

a − ∂y
(
∂yax

a − ∂xay
a − gεabc

(
Āy

bax
c + ay

bĀx
c

)) − 1

τ 2
∂η

(
∂ηax

a − τ 2∂xaη
a − gτ 2εabc

(
Āη

bax
c + aη

bĀx
c

))
+ gεabc

(
Āy

b

(
∂yax

c − ∂xay
c

) + ay
b

(
∂yĀx

c − ∂xĀy
c

) + Āη

b

(
∂ηax

c − τ 2∂xaη
c

) + aη

b

(
∂ηĀx

c − τ 2∂xĀη
c

))
− g2

(
Āy

bĀy
aax

b + Āy
bay

aĀx
b + ay

bĀy
aĀx

b − Āy
bĀy

bax
a − Āy

bay
bĀx

a − ay
bĀy

bĀx
a

+ τ 2
(
Āη

bĀη
aax

b + Āη

baη
aĀx

b + aη

bĀη
aĀx

b − Āη

bĀη

bax
a − Āη

bAη

bĀx
a − aη

bĀη

bĀx
a

)) = 0, (26)

∂2
τ ay

a + 1

τ
∂τ ay

a − ∂x
(
∂xay

a − ∂yax
a − gεabc

(
Āx

bay
c + ax

bĀy
c

)) − 1

τ 2
∂η

(
∂ηay

a − τ 2∂yaη
a − gτ 2εabc

(
Āη

bay
c + aη

bĀy
c

))
+ gεabc

(
Āx

b

(
∂xay

c − ∂yax
c

) + ax
b

(
∂xĀy

c − ∂yĀx
c

) + Āη

b

(
∂ηay

c − τ 2∂yaη
c

) + aη

b

(
∂ηĀy

c − τ 2∂yĀη
c

))
− g2

(
Āx

bĀx
aay

b + Āx
bax

aĀy
b + ax

bĀx
aĀy

b − Āx
bĀx

bay
a − Āx

bax
bĀy

a − ax
bĀx

bĀy
a

+ τ 2
(
Āη

bĀη
aay

b + Āη

baη
aĀy

b + aη

bĀη
aĀy

b − Āη

bĀη

bay
a − Āη

baη

bĀy
a − aη

bĀη

bĀy
a

)) = 0, (27)

∂2
τ

(
τ 2aη

a

) − 1

τ
∂τ

(
τ 2aη

a

) − ∂x
(
τ 2∂xaη

a − ∂ηax
a − gτ 2εabc

(
Āx

baη
c + ax

bĀη
c

)) − ∂y
(
τ 2∂yaη

a − ∂ηay
a − gτ 2εabc

(
Āy

baη
c + ay

bĀη
c

))
+ gεabc

(
Āx

b

(
τ 2∂xaη

c − ∂ηax
c

) + ax
b

(
τ 2∂xĀη

c − ∂ηĀx
c

) + Āy
b

(
τ 2∂yaη

c − ∂ηay
c

) + ay
b

(
τ 2∂yĀη

c − ∂ηĀy
c

))
+ g2τ 2

( − Āx
bĀx

aaη

b − Āx
bax

aĀη

b − ax
bĀx

aĀη

b + Āx
bĀx

baη
a + Āx

bax
bĀη

a + ax
bĀx

bĀη
a

− Āy
bĀy

aaη

b − Āy
bay

aĀη

b − ay
bĀy

aĀη

b + Āy
bĀy

baη
a + Āy

bay
bĀη

a + ay
bĀy

bĀη
a

) = 0. (28)

IV. STABILITY OF MAGNETIC FIELD

We consider here the stability of the magnetic field B
generated along the z-axis at the earliest phase of a heavy-
ion collision. The field is given by the formula (13), that is,
it is assumed to be space-time uniform. The validity of the
assumption is discussed in Sec. VII.

The field occurs due to the precollision potentials β i
1a and

β i
2a, which are independent of each other. The two potentials

are parametrized by means of two parameters λ and B in the
following way:

β i
1a = δixδa3 1

λ

√
B

g
, β i

2a = δiyδa2λ

√
B

g
. (29)

The corresponding background four-potential can be written
in matrix notation as

Āμ
a =

⎡
⎢⎢⎣

0 0 0 0

0 0 λ
√

B
g 0

0 1
λ

√
B
g 0 0

⎤
⎥⎥⎦, (30)

where the Lorentz index μ numerates the columns, and the
color index a numerates the rows. The potential (30) substi-
tuted into Eqs. (12) and (13) gives

Eα
a = 0, Bα

a = δαzδa1B. (31)

So, we have the vanishing electric field and uniform magnetic
field of color 1 along the z-axis.

The magnetic field (31) is independent of λ but the con-
figurations of different lambdas are known to be physically
nonequivalent [20]. This is easily demonstrated substituting
the background potential (30) into the Yang-Mills equa-
tions (20)–(23). Then, one finds⎡

⎣0 0 0 0
0 0 1

λ

√
gB3 0

0 λ
√

gB3 0 0

⎤
⎦ = jνa . (32)

The current (32) squared, which is gauge invariant, equals

jμa ja μ = −
(

1

λ2
+ λ2

)
gB3, (33)

and it depends on (λ−2 + λ2). Therefore, the potential config-
urations (30) of different (λ−2 + λ2) are gauge nonequivalent
[20], nevertheless they produce the same field strength and the
same energy density.

Equation (32) also shows that, in contrast to the Abelian
configuration of uniform magnetic field, the non-Abelian one
(30) does not solve the Yang-Mills equations with vanish-
ing current. It means that the field must evolve in time to
satisfy the equations. Consequently, a stationary character
of the background field is only an approximation which is
applicable in the stability analysis if the rate of change of
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the background field is much smaller than the rate of change
of small fluctuations. We return to this issue in Secs. VI
and VII.

Performing the stability analysis, we temporarily assume
following [12] that the current, which equals the left-hand
side of Eq. (32), enters the Yang-Mills equation. Then, the

stability analysis is performed in a standard way: the back-
ground potential (30) solves the equations of motion, and one
checks whether small perturbations of this stationary solution
grow or decay.

With the background potential (30), the linearized Yang-
Mills Eqs. (25)–(28) split into colors are

−∂x∂τ ax
1 − ∂y∂τ ay

1 − 1

τ 2
∂η∂τ

(
τ 2aη

1

) + g
( − Āx

3∂τ ax
2 + Āy

2∂τ ay
3

) = 0, (34)

−∂x∂τ ax
2 − ∂y∂τ ay

2 − 1

τ 2
∂η∂τ

(
τ 2aη

2

) + gĀx
3∂τ ax

1 = 0, (35)

−∂x∂τ ax
3 − ∂y∂τ ay

3 − 1

τ 2
∂η∂τ

(
τ 2aη

3

) − gĀy
2∂τ ay

1 = 0, (36)

∂2
τ ax

1+
1

τ
∂τ ax

1−∂y
(
∂yax

1−∂xay
1 − g

(
Āy

2ax
3 + ay

2Āx
3

)) − 1

τ 2
∂η

(
∂ηax

1 − τ 2∂xaη

1 − gτ 2aη

2Āx
3

) + gĀy
2

(
∂yax

3 − ∂xay
3

) + g2Āy
2Āy

2ax
1 = 0,

(37)

∂2
τ ax

2 + 1

τ
∂τ ax

2 − ∂y
(
∂yax

2 − ∂xay
2 + gay

1Āx
3

) − 1

τ 2
∂η

(
∂ηax

2 − τ 2∂xaη

2 + gτ 2aη

1Āx
3

) − g2ay
3Āy

2Āx
3 = 0, (38)

∂2
τ ax

3 + 1

τ
∂τ ax

3 − ∂y
(
∂yax

3 − ∂xay
3 + gĀy

2ax
1

) − 1

τ 2
∂η

(
∂ηax

3 − τ 2∂xaη

3

) − gĀy
2

(
∂yax

1 − ∂xay
1

) + g2
(
Āy

2Āy
2ax

3 + 2ay
2Āy

2Āx
3

) = 0,

(39)

∂2
τ ay

1+
1

τ
∂τ ay

1 − ∂x
(
∂xay

1 − ∂yax
1+g

(
Āx

3ay
2+ax

3Āy
2

)) − 1

τ 2
∂η

(
∂ηay

1 − τ 2∂yaη

1+gτ 2aη

3Āy
2

) − gĀx
3

(
∂xay

2 − ∂yax
2

) + g2Āx
3Āx

3ay
1 = 0,

(40)

∂2
τ ay

2 + 1

τ
∂τ ay

2 − ∂x
(
∂xay

2 − ∂yax
2 − gĀx

3ay
1) − 1

τ 2
∂η

(
∂ηay

2 − τ 2∂yaη

2

) + gĀx
3

(
∂xay

1 − ∂yax
1

) + g2
(
Āx

3Āx
3ay

2 + 2ax
3Āx

3Āy
2

) = 0,

(41)

∂2
τ ay

3 + 1

τ
∂τ ay

3 − ∂x
(
∂xay

3 − ∂yax
3 − gax

1Āy
2

) − 1

τ 2
∂η

(
∂ηay

3 − τ 2∂yaη

3 − gτ 2aη

1Āy
2

) − g2ax
2Āx

3Āy
2 = 0, (42)

∂2
τ

(
τ 2aη

1

) − 1

τ
∂τ

(
τ 2aη

1

) − ∂x
(
τ 2∂xaη

1 − ∂ηax
1 + gτ 2Āx

3aη

2

) − ∂y
(
τ 2∂yaη

1 − ∂ηay
1 − gτ 2Āy

2aη

3

)
− g

(
Āx

3

(
τ 2∂xaη

2 − ∂ηax
2

) − Āy
2

(
τ 2∂yaη

3 − ∂ηay
3

)) + g2τ 2(Āx
3Āx

3 + Āy
2Āy

2

)
aη

1 = 0, (43)

∂2
τ

(
τ 2aη

2

) − 1

τ
∂τ

(
τ 2aη

2

) − ∂x
(
τ 2∂xaη

2 − ∂ηax
2 − gτ 2Āx

3aη

1

) − ∂y
(
τ 2∂yaη

2 − ∂ηay
2

) + gĀx
3

(
τ 2∂xaη

1 − ∂ηax
1

) + g2τ 2Āx
3Āx

3aη

2 = 0,

(44)

∂2
τ

(
τ 2aη

3

) − 1

τ
∂τ

(
τ 2aη

3

) − ∂x
(
τ 2∂xaη

3 − ∂ηax
3

) − ∂y
(
τ 2∂yaη

3 − ∂ηay
3 + gτ 2Āy

2aη

1

) − gĀy
2

(
τ 2∂yaη

1 − ∂ηay
1

) + g2τ 2Āy
2Āy

2aη

3 = 0.

(45)

So, we have a system of 12 equations to be solved. We have managed to solve exactly the analogous set of equations using
the Minkowski coordinates, background gauge, and λ = 1 condition [21]. Thanks to Minkowski coordinates, the problem was
fully algebraic after the Fourier transformation of space and time coordinates. Due to the background gauge, a mixing of various
color components was minimal, and the condition λ = 1 provided an axial symmetry with respect to the axis along the magnetic
field. Here we deal with a more complicated system of equations. So, we consider a simplified situation when an evolution of
longitudinal and transverse potential components is treated separately. Specifically, we discuss two special cases that still allow
one to reveal characteristic features of the problem.

A. Special case: aη
a = 0 & ax

a �= 0, ay
a �= 0

When aη
a = 0, Eqs. (34)–(45) read

− ∂x∂τ ax
1 − ∂y∂τ ay

1 − g
(
Āx

3∂τ ax
2 − Āy

2∂τ ay
3

) = 0, (46)
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− ∂x∂τ ax
2 − ∂y∂τ ay

2 + gĀx
3∂τ ax

1 = 0, (47)

− ∂x∂τ ax
3 − ∂y∂τ ay

3 − gĀy
2∂τ ay

1 = 0, (48)(
∂2
τ + 1

τ
∂τ − ∂2

y − 1

τ 2
∂2
η

)
ax

1 + ∂x∂yay
1 + gĀx

3∂yay
2 + gĀy

2

(
2∂yax

3 − ∂xay
3

) + g2Āy
2Āy

2ax
1 = 0, (49)

(
∂2
τ + 1

τ
∂τ − ∂2

y − 1

τ 2
∂2
η

)
ax

2 + ∂x∂yay
2 − gĀx

3∂yay
1 − g2Āy

2Āx
3ay

3 = 0, (50)

(
∂2
τ + 1

τ
∂τ − ∂2

y − 1

τ 2
∂2
η

)
ax

3 + ∂x∂yay
3 − gĀy

2

(
2∂yax

1 − ∂xay
1

) + g2
(
Āy

2Āy
2ax

3 + 2Āy
2Āx

3ay
2

) = 0, (51)

(
∂2
τ + 1

τ
∂τ − ∂2

x − 1

τ 2
∂2
η

)
ay

1 + ∂y∂xax
1 − gĀy

2∂xax
3 − gĀx

3

(
2∂xay

2 − ∂yax
2

) + g2Āx
3Āx

3ay
1 = 0, (52)

(
∂2
τ + 1

τ
∂τ − ∂2

x − 1

τ 2
∂2
η

)
ay

2 + ∂y∂xax
2 + gĀx

3

(
2∂xay

1 − ∂yax
1

) + g2(Āx
3Āx

3ay
2 + 2Āx

3Āy
2ax

3

) = 0, (53)

(
∂2
τ + 1

τ
∂τ − ∂2

x − 1

τ 2
∂2
η

)
ay

3 + ∂y∂xax
3 + gĀy

2∂xax
1 − g2Āx

3Āy
2ax

2 = 0, (54)

∂x∂ηax
1 + ∂y∂ηay

1 + g
(
Āx

3∂ηax
2 − Āy

2∂ηay
3

) = 0, (55)

∂x∂ηax
2 + ∂y∂ηay

2 − gĀx
3∂ηax

1 = 0, (56)

∂x∂ηax
3 + ∂y∂ηay

3 + gĀy
2∂ηay

1 = 0. (57)

One sees that Eqs. (46)–(48) and (55)–(57) are solved if

∂xax
1 + ∂yay

1 + g
(
Āx

3ax
2 − Āy

2ay
3

) = 0, (58)

∂xax
2 + ∂yay

2 − gĀx
3ax

1 = 0, (59)

∂xax
3 + ∂yay

3 + gĀy
2ay

1 = 0. (60)

Substituting ∂yay
1 = −∂xax

1 − g(Āx
3ax

2 − Āy
2ay

3) and ∂yay
2 = −∂xax

2 + gĀx
3ax

1 into Eqs. (49) and (50), and ∂yay
3 = −∂xax

3 − gĀy
2ay

1
into Eq. (51), one finds (

� + g2
(
Āx

3Āx
3 + Āy

2Āy
2

))
ax

1 − 2gĀx
3∂xax

2 + 2gĀy
2∂yax

3 = 0, (61)(
� + g2Āx

3Āx
3

)
ax

2 + 2gĀx
3∂xax

1 − 2g2Āx
3Āy

2ay
3 = 0, (62)(

� + g2Āy
2Āy

2

)
ax

3 − 2gĀy
2∂yax

1 + 2g2Āy
2Āx

3ay
2 = 0, (63)

where

� ≡ ∂2
τ + 1

τ
∂τ − ∂2

x − ∂2
y − 1

τ 2
∂2
η . (64)

Proceeding analogously with Eqs. (52), (53), and (54), we obtain(
� + g2

(
Āx

3Āx
3 + Āy

2Āy
2

))
ay

1 + 2gĀy
2∂yay

3 − 2gĀx
3∂xay

2 = 0, (65)(
� + g2Āx

3Āx
3

)
ay

2 + 2gĀx
3∂xay

1 + 2g2Āx
3Āy

2ax
3 = 0, (66)(

� + g2Āy
2Āy

2

)
ay

3 − 2gĀy
2∂yay

1 − 2g2Āy
2Āx

3ax
2 = 0. (67)

Defining the functions

V ±
a ≡ ax

a ± iay
a, (68)

Equations (61)–(67) provide (
� + g2

(
Āx

3Āx
3 + Āy

2Āy
2

))
V ±

1 − 2gĀx
3∂xV

±
2 + 2gĀy

2∂yV
±

3 = 0, (69)(
� + g2Āx

3Āx
3

)
V ±

2 + 2gĀx
3∂xV

±
1 ± 2ig2Āx

3Āy
2V

±
3 = 0, (70)(

� + g2Āy
2Āy

2

)
V ±

3 − 2gĀy
2∂yV

±
1 ∓ 2ig2Āy

2Āx
3V

±
2 = 0. (71)

One sees that the equations of V +
1 ,V +

2 ,V +
3 and those of V −

1 ,V −
2 ,V −

3 form closed systems, that is, the functions V +
a do not mix

up with V −
a .
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Keeping in mind that Āy
2 = λ

√
B/g and Āx

3 = λ−1√B/g, Eqs. (69), (70), and (71) can be rewritten in the matrix notation as⎡
⎢⎣
� + (λ2 + λ−2)gB −2iλ−1√gB kx 2iλ

√
gB ky

2iλ−1√gB kx � + λ−2gB ±2igB

−2iλ
√

gB ky ∓2igB � + λ2gB

⎤
⎥⎦

⎡
⎢⎣

V ±
1

V ±
2

V ±
3

⎤
⎥⎦ =

⎡
⎣0

0
0

⎤
⎦, (72)

where we have assumed that the functions V ±
a depend on x, y, η through ei(kxx+kyy+νη) and consequently the d’Alembertian is

redefined as

� ≡ ∂2
τ + 1

τ
∂τ + k2

x + k2
y + ν2

τ 2
. (73)

The eigenvalues � of the matrix in Eq. (72) are provided by the cubic equation

det

⎡
⎣� + (λ2 + λ−2)gB − � −2iλ−1√gB kx 2iλ

√
gB ky

2iλ−1√gB kx � + λ−2gB − � ±2igB
−2iλ

√
gB ky ∓2igB � + λ2gB − �

⎤
⎦ = 0, (74)

which gives

(� + (λ2 + λ−2)gB − �)(� + λ−2gB − �)(� + λ2gB − �)

−4g2B2(� + (λ2 + λ−2)gB − �) − 4λ−2gB k2
x (� + λ2gB − �) − 4λ2gB k2

y (� + λ−2gB − �) = 0. (75)

One sees that Eq. (75) is the same for the equation of V + and V −. Consequently, the eigenvalues of the matrices, which enter
equations of V + and V −, are the same.

When kx = 0 and ky = 0, Eq. (75) becomes

(� + (λ2 + λ−2)gB − �(0) )(�2 − (2� + (λ−2 + λ2)gB)�(0) + (� + λ−2gB)(� + λ2gB) − 4g2B2) = 0, (76)

and it is solved by

�1 = � + (λ2 + λ−2)gB, �± = � + 1
2 (λ−2 + λ2 ±

√
(λ−2 + λ2)2 + 12)gB. (77)

After the diagonalization of the matrix equation (72), one
gets three equations:

(
∂2
τ + 1

τ
∂τ + ν2

τ 2
+ b2

1

)
f1(τ ) = 0, (78)

(
∂2
τ + 1

τ
∂τ + ν2

τ 2
± b2

±

)
f±(τ ) = 0, (79)

where

b2
1 ≡ (λ2 + λ−2)gB, (80)

b2
± ≡ 1

2 (
√

(λ−2 + λ2)2 + 12 ± (λ−2 + λ2))gB, (81)

and the functions f1 and f± are linear combinations of either
V +

1 ,V +
2 ,V +

3 or V −
1 ,V −

2 ,V −
3 . When λ = 1, we have

b2
1 = 2gB, b2

+ = 3gB, b2
− = gB. (82)

One sees that the equations of f1 and f+ are the Bessel
equation and that of f− is the modified Bessel equation. The
equations are briefly discussed for the reader’s convenience
in the Appendix. Since we are interested in solutions, which
are everywhere finite, as we study small fluctuations around
the background field, the solutions f1(τ ) and f+(τ ) are the
Bessel function of imaginary order Jiν (b1τ ) or Jiν (b+τ ), and
f−(τ ) is the modified Bessel function Iiν (b−τ ). While the

solutions f1(τ ) and f+(τ ) are oscillatory, the solution f−(τ )
grows as exp(

√
b−gB τ ) when τ 2 > ν2/b2

− and represents the
instability analogous to the Nielsen-Olesen instability [18].
The difference is that the unstable Nielsen-Olesen mode ap-
pears in the Abelian configuration of the magnetic background
field. We note that when λ = 1, the equation (79) of f−
fully coincides with that of the unstable mode of the Abelian
configuration after a dependence on transverse coordinates is
separated out using the Hamiltonian of the harmonic oscillator
[16]. The time dependence of the unstable solution of Abelian
configuration at any kx and ky coincides with that of the non-
Abelian one at kx = ky = 0. One also checks that when λ = 1,
the growth rate of the unstable mode

√
b−gB is maximal and

equal to
√

gB. When λ goes to zero or infinity, the growth rate
tends to zero.

It follows from Eq. (79) that a behavior of the solution
f−(τ ) depends of the sign of ν2/τ 2 − b2

−. For short times
when ν2/τ 2 − b2

− is positive, the function f−(τ ) oscillates
around zero, and for later times when ν2/τ 2 − b2

− is negative,
the function grows exponentially, as discussed in [13,15,16].
When the field fluctuation is independent of space-time rapid-
ity η, it is invariant under boosts along the z-axis and ν = 0.
Then, the function f−(τ ) starts exponentially growing right
from τ = 0. If the field fluctuation varies with η and ν > 0,
the exponential growth is delayed to τ = ν/b−.

When the stability analysis of a uniform chromomagnetic
field is performed using the Minkowski coordinates with time
t not the proper time τ [21,22], plane waves are solutions of
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the linearized equations of motion, and the unstable modes
start exponentially growing at t = 0. So, there is no delay
of the growth, but the growth rate is reduced from

√
gB to√

gB − k2
z , where kz is the longitudinal momentum analogous

to ν.

B. Effect of transverse momenta

Let us now discuss how finite momenta kx or ky influence
the stability of the uniform magnetic field. If kx �= 0 or ky �= 0,
Eq. (75) is a cubic one. Although the roots of such an equa-
tion are given by the Cardano formula, their structure is rather

complex. So, for finite kx or ky we solve Eq. (75) perturba-
tively, assuming that gB � k2

x and gB � k2
y . The solutions

(77) are now the zeroth-order solution denoted as �(0), while
the first-order solutions are assumed to be of the form

�(1) = �(0) + cxk2
x + cyk2

y , (83)

where the coefficients cx and cy are to be found. Substituting
the formula (83) into Eq. (75), neglecting the terms that are
quadratic and cubic in k2

x and k2
y , and using the zeroth-order

equations satisfied by �(0), one finds

−(
cxk2

x + cyk2
y

)
[(� + λ−2gB − �(0) )(� + λ2gB − �(0) ) + (� + (λ2 + λ−2)gB − �(0) )(� + λ2gB − �(0) )

+ (� + (λ2 + λ−2)gB − �(0) )(� + λ−2gB − �(0) ) − 4g2B2] = 4λ−2gB k2
x (� + λ2gB − �(0) )

+ 4λ2gB k2
y (� + λ−2gB − �(0) ).

(84)

Since Eq. (84) must be solved for any k2
x and any k2

y , one finds the coefficients cx and cy putting k2
y = 0 and k2

x = 0, respectively.
Thus, one obtains

cx = − 4λ−2(λ2 − �̄(0) )

(λ−2 − �̄(0) )(λ2 − �̄(0) ) + (λ2 + λ−2 − �̄(0) )(λ2 − �̄(0) ) + (λ2 + λ−2 − �̄(0) )(λ−2 − �̄(0) ) − 4
, (85)

cy = − 4λ2(λ−2 − �̄(0) )

(λ−2 − �̄(0) )(λ2 − �̄(0) ) + (λ2 + λ−2 − �̄(0) )(λ2 − �̄(0) ) + (λ2 + λ−2 − �̄(0) )(λ−2 − �̄(0) ) − 4
, (86)

where

�̄(0) ≡ �(0) − �
gB

. (87)

Using the zeroth-order solutions �
(0)
1 and �

(0)
± , we obtain

c1
x = = −4

3
λ−4, c1

y = −4

3
λ4, (88)

c±
x = − 4λ−2(−λ−2 + λ2 ∓

√
(λ−2 + λ2)2 + 12)

λ4 + λ−4 ∓ (λ2 + λ−2)
√

(λ−2 + λ2)2 + 12 + 14
, (89)

c±
y = − 4λ2(λ−2 − λ2 ∓

√
(λ−2 + λ2)2 + 12)

λ4 + λ−4 ∓ (λ2 + λ−2)
√

(λ−2 + λ2)2 + 12 + 14
. (90)

For λ = 1 the formulas (88), (89), and (90) simplify to

c1
x = c1

y = −4

3
, c±

x = c±
y = ± 2

2 ∓ 1
. (91)

Knowing the approximate eigenvalues of the matrix from Eq. (72), we can write down the equations of motion as(
∂2
τ + 1

τ
∂τ+ν2

τ 2
+b2

1+
(
c1

x+1
)
k2

x +
(
c1

y+1
)
k2

y

)
f1(τ ) = 0,

(92)(
∂2
τ + 1

τ
∂τ+ν2

τ 2
± b2

±+(c±
x +1)k2

x +(c±
y +1)k2

y

)
f±(τ ) = 0.

(93)

Since k2
x 	 gB and k2

y 	 gB, a character of the solutions of Eqs. (92) and (93) is similar to those of Eqs. (78) and (79). The
solutions f1 and f+ are stable while f− can be unstable. So, we focus on the latter one, which is of our main interest. The solution
is unstable if ν2/τ 2 − b2

− + (c−
x + 1)k2

x + (c−
y + 1)k2

y is negative. Since c−
x + 1 and c−

y + 1 are both positive for any λ, one finds
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that finite momenta kx and ky tend to stabilize the solution. This is clearly seen in the case of λ = 1 when, as already discussed,
the growth rate

√
b−gB is maximal when kx = ky = 0. For λ = 1, the equation of f− reads(

∂2
τ + 1

τ
∂τ + ν2

τ 2
− gB + 1

3
k2

T

)
f−(τ ) = 0, (94)

where k2
T ≡ k2

x + k2
y . The growth rate of the unstable mode is

√
gB − k2

T /3. However, we cannot conclude that the instability is
absent if k2

T � 3gB, as k2
T is assumed to be small when compared to gB. We note that in the case of the Nielsen-Olesen mode

in the Abelian configuration of a chromomagnetic field, the growth rate is not influenced by the transverse momentum, and it
equals

√
gB. A comparison of unstable modes in Abelian and non-Abelian configurations of a uniform chromomagnetic field is

presented in Fig. 5 of our earlier work [21], where the stability analysis is performed using the Minkowski coordinates with time
not the proper time.

C. Special case: aη
a �= 0 & ax

a = ay
a = 0

Let us now discuss purely longitudinal dynamics. When ax
a = ay

a = 0, Eqs. (34)–(45) read

∂η∂τ

(
τ 2aη

1

) = 0, (95)

∂η∂τ

(
τ 2aη

2

) = 0, (96)

∂η∂τ

(
τ 2aη

3

) = 0, (97)

∂η

(
∂xaη

1 − gaη

2Āx
3

) = 0, (98)

∂η

(
∂xaη

2 + gaη

1Āx
3

) = 0, (99)

∂η∂xaη

3 = 0, (100)

∂η

(
∂yaη

1 − gaη

3Āy
2

) = 0, (101)

∂η∂yaη

2 = 0, (102)

∂η

(
∂yaη

3 + gaη

1Āy
2

) = 0, (103)(
∂2
τ + 1

τ
∂τ − ∂2

x − ∂2
y + g2

(
Āx

3Āx
3 + Āy

2Āy
2

))
aη

1 − 2gĀx
3∂xaη

2 + 2gĀy
2∂yaη

3 = 0, (104)

(
∂2
τ + 1

τ
∂τ − ∂2

x − ∂2
y + g2Āx

3Āx
3

)
aη

2 + 2gĀx
3∂xaη

1 = 0, (105)

(
∂2
τ + 1

τ
∂τ − ∂2

x − ∂2
y + g2Āy

2Āy
2

)
aη

3 − 2gĀy
2∂yaη

1 = 0. (106)

One sees that Eqs. (95)–(103) are solved if aη
a is independent of η, which is the case assumed further on. Keeping in mind

that Āy
2 = λ

√
B/g and Āx

3 = λ−1√B/g, Eqs. (104), (105), and (106) can be rewritten in matrix notation as⎡
⎣� + (λ2 + λ−2)gB −2iλ−1√gB kx 2iλ

√
gB ky

2λ−1i
√

gB kx � + λ−2gB 0
−2λi

√
gB ky 0 � + λ2gB

⎤
⎦

⎡
⎣aη

1
aη

2
aη

3

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦, (107)

where we have assumed that the functions aη
a depend on x and y through ei(kxx+kyy) and consequently

� ≡ ∂2
τ + 1

τ
∂τ + k2

x + k2
y . (108)

When kx = ky = 0, Eq. (107) is diagonal and it provides three equations,(
∂2
τ + 1

τ
∂τ + (λ−2 + λ2)gB

)
aη

1 = 0, (109)

(
∂2
τ + 1

τ
∂τ + λ−2gB

)
aη

2 = 0, (110)

(
∂2
τ + 1

τ
∂τ + λ2gB

)
aη

3 = 0. (111)
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The solutions are aη
i ∼ J0(σiτ ) with

σ1 =
√

(λ−2 + λ2)gB, σ2 = λ−1
√

gB, σ3 = λ
√

gB. (112)

The solutions are stable.
When kx �= 0 or ky �= 0, Eq. (107) needs to be diagonalized. When λ = 1, one easily finds three equations,(

∂2
τ + 1

τ
∂τ + k2

T + gB

)
f1 = 0, (113)

(
∂2
τ + 1

τ
∂τ + k2

T + 1

2

(
3gB ±

√
g2B2 + 16gBk2

T

))
f± = 0. (114)

Because k2
T + gB > 0 and

k2
T + 1

2

(
3gB ±

√
g2B2 + 16gBk2

T

)
> 0,

the solutions are stable.
We have explicitly shown above that the uniform longitudinal chromomagnetic field is stable under purely longitudinal

fluctuations in two special cases: (i) λ arbitrary and kx = ky = 0, (ii) λ = 1 and kx, ky are arbitrary. When λ, kx, and ky are
arbitrary, the situation is more complicated, but the special cases suggest that the solutions of interest are stable.

V. STABILITY OF ELECTRIC FIELD

We consider here the stability of the uniform electric field E along the collision axis z. The field is in the Abelian configuration
given by the formula (12). In Minkowski coordinates, the potential that generates the electric field Ei

a = δizδa1E and obeys the
gauge condition t Āt − zĀz = 0 is

Āμ
a = − 1

2δa1(zE , 0, 0, tE ). (115)

In Milne coordinates, the potential is

Āμ
a = − 1

2δa1(0, 0, 0, E ), Āa
μ = 1

2δa1(0, 0, 0, τ 2E ). (116)

The problem of stability of a uniform chromoelectric field in the Abelian configuration was studied in Minkowski
coordinates using the axial gauge Āz = az = 0 in [10] and the Lorentz gauge ∂μĀμ = 0 combined with the back-
ground gauge Dμaμ = 0, where the covariant derivative Dμ includes the background potential, in our earlier work
[21]. The problem was also studied in the context of glasma [16], using the Milne coordinates and Fock-Schwinger
gauge (4). In our analysis, which is presented below, we follow the study in Ref. [16], clarifying and improving some
points.

With the background potential (116), the linearized Yang-Mills equations (25)–(28) split into color components are

− ∂x∂τ ax
1 − ∂y∂τ ay

1 − 1

τ 2
∂η∂τ

(
τ 2aη

1

) = 0, (117)

− ∂x∂τ ax
2 − ∂y∂τ ay

2 − 1

τ 2
∂η∂τ

(
τ 2aη

2

) − gτ 2Āη

1∂τ aη

3 = 0, (118)

− ∂x∂τ ax
3 − ∂y∂τ ay

3 − 1

τ 2
∂η∂τ

(
τ 2aη

3

) + gτ 2Āη

1∂τ aη

2 = 0, (119)

∂2
τ ax

1 + 1

τ
∂τ ax

1 − ∂y
(
∂yax

1 − ∂xay
1

) − 1

τ 2
∂η

(
∂ηax

1 − τ 2∂xaη

1

) = 0, (120)

∂2
τ ax

2 + 1

τ
∂τ ax

2 − ∂y
(
∂yax

2 − ∂xay
2

) − 1

τ 2
∂η

(
∂ηax

2 − τ 2∂xaη

2 + gτ 2Āη

1ax
3

) − gĀη

1

(
∂ηax

3 − τ 2∂xaη

3

) + g2τ 2Āη

1Āη

1ax
2 = 0, (121)

∂2
τ ax

3 + 1

τ
∂τ ax

3 − ∂y
(
∂yax

3 − ∂xay
3

) − 1

τ 2
∂η

(
∂ηax

3 − τ 2∂xaη

3 − gτ 2Āη

1ax
2

) + gĀη

1

(
∂ηax

2 − τ 2∂xaη

2

) + g2τ 2Āη

1Āη

1ax
3 = 0, (122)

∂2
τ ay

1 + 1

τ
∂τ ay

1 − ∂x
(
∂xay

1 − ∂yax
1

) − 1

τ 2
∂η

(
∂ηay

1 − τ 2∂yaη

1

) = 0, (123)

∂2
τ ay

2 + 1

τ
∂τ ay

2 − ∂x
(
∂xay

2 − ∂yax
2

) − 1

τ 2
∂η

(
∂ηay

2 − τ 2∂yaη

2 + gτ 2Āη

1ay
3

) − gĀη

1

(
∂ηay

3 − τ 2∂yaη

3

) + g2τ 2Āη

1Āη

1ay
2 = 0, (124)

∂2
τ ay

3 + 1

τ
∂τ ay

3 − ∂x
(
∂xay

3 − ∂yax
3

) − 1

τ 2
∂η

(
∂ηay

3 − τ 2∂yaη

3 − gτ 2Āη

1ay
2

) + gĀη

1

(
∂ηay

2 − τ 2∂yaη

2

) + g2τ 2Āη

1Āη

1ay
3 = 0, (125)
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∂2
τ

(
τ 2aη

1

) − 1

τ
∂τ (τ 2aη

1 ) − ∂x
(
τ 2∂xaη

1 − ∂ηax
1

) − ∂y
(
τ 2∂yaη

1 − ∂ηay
1

) = 0, (126)

∂2
τ

(
τ 2aη

2

) − 1

τ
∂τ (τ 2aη

2 ) − ∂x
(
τ 2∂xaη

2 − ∂ηax
2 − gτ 2ax

3Āη

1

) − ∂y
(
τ 2∂yaη

2 − ∂ηay
2 − gτ 2ay

3Āη

1

) = 0, (127)

∂2
τ

(
τ 2aη

3

) − 1

τ
∂τ (τ 2aη

3 ) − ∂x
(
τ 2∂xaη

3 − ∂ηax
3 + gτ 2ax

2Āη

1

) − ∂y
(
τ 2∂yaη

3 − ∂ηay
3 + gτ 2ay

2Āη

1

) = 0. (128)

As one observes, the fluctuating potential aμ
1 is decoupled

not only from aμ
2 and aμ

3 but from the background field as well.
So, aμ

1 describes free waves that are not discussed anymore.
However, we still have a set of eight equations. Following
[16], we consider a simplified situation when an evolution
of longitudinal and transverse potential components is treated
separately. Specifically, we discuss two special cases that al-
low one to reveal characteristic features of the problem.

A. Special case: ax
a = ay

a = 0 & aη
a �= 0

When ax
a = ay

a = 0 and aη
a �= 0, Eqs. (117)–(128) are(

∂τ + 2

τ

)
∂ηaη

2 + gτ 2Āη

1∂τ aη

3 = 0, (129)

(
∂τ + 2

τ

)
∂ηaη

3 − gτ 2Āη

1∂τ aη

2 = 0, (130)

∂x
(
∂ηaη

2 + gτ 2Āη

1aη

3

) = 0, (131)

∂x
(
∂ηaη

3 − gτ 2Āη

1aη

2

) = 0, (132)

∂y
(
∂ηaη

2 + gτ 2Āη

1aη

3

) = 0, (133)

∂y
(
∂ηaη

3 − gτ 2Āη

1aη

2

) = 0, (134)(
∂2
τ + 3

τ
∂τ − ∂2

x − ∂2
y

)
aη

2 = 0, (135)

(
∂2
τ + 3

τ
∂τ − ∂2

x − ∂2
y

)
aη

3 = 0. (136)

Introducing the functions

H±(τ, x, y, η) ≡ aη

2 (τ, x, y, η) ± iaη

3 (τ, x, y, η), (137)

Eqs. (129)–(136) are written as[(
∂τ + 2

τ

)
∂η ∓ igτ 2Āη

1∂τ

]
H± = 0, (138)

∂x
(
∂η ∓ igτ 2Āη

1

)
H± = 0, (139)

∂y
(
∂η ∓ igτ 2Āη

1

)
H± = 0, (140)(

∂2
τ + 3

τ
∂τ − ∂2

x − ∂2
y

)
H± = 0. (141)

If ∂xH± �= 0 and ∂yH± �= 0, Eqs. (139) and (140) are solved
if the functions H± obey(

∂η ∓ igτ 2Āη

1

)
H± = 0. (142)

Equation (142) is solved by H± ∼ exp(±igτ 2Āη

1 η), which
when substituted into Eq. (138) gives H± = 0. So, we con-
clude that if ax

a = ay
a = 0, then aη

a = 0 as well. In other words,
the purely longitudinal dynamics is trivial.

B. Special case: aη
a = 0 & ax

a �= 0, ay
a �= 0

When aη
a = 0 and ax

a �= 0 or ay
a �= 0, Eqs. (117)–(128) read

∂τ

(
∂xax

2 + ∂yay
2

)
= 0, (143)

∂τ

(
∂xax

3 + ∂yay
3

)
= 0, (144)

(
∂2
τ + 1

τ
∂τ − ∂2

y − 1

τ 2
∂2
η + g2τ 2Āη

1Āη

1

)
ax

2 + ∂x∂yay
2

− 2gĀη

1∂ηax
3 = 0, (145)(

∂2
τ + 1

τ
∂τ − ∂2

y − 1

τ 2
∂2
η + g2τ 2Āη

1Āη

1

)
ax

3 + ∂x∂yay
3

+ 2gĀη

1∂ηax
2 = 0, (146)(

∂2
τ + 1

τ
∂τ − ∂2

x − 1

τ 2
∂2
η + g2τ 2Āη

1Āη

1

)
ay

2 + ∂y∂xax
2

− 2gĀη

1∂ηay
3 = 0, (147)(

∂2
τ + 1

τ
∂τ − ∂2

x − 1

τ 2
∂2
η + g2τ 2Āη

1Āη

1

)
ay

3 + ∂y∂xax
3

+ 2gĀη

1∂ηay
2 = 0, (148)

∂η

(
∂xax

2 + ∂yay
2

) + gτ 2Āη

1

(
∂xax

3 + ∂yay
3

) = 0, (149)

∂η

(
∂xax

3 + ∂yay
3

) − gτ 2Āη

1

(
∂xax

2 + ∂yay
2

) = 0. (150)

Equations (143),(144) and (149),(150) are solved, respec-
tively, if

∂xax
2 = −∂yay

2, ∂xax
3 = −∂yay

3, (151)

which substituted into Eqs. (145)–(148) give(
∂2
τ + 1

τ
∂τ − ∂2

x − ∂2
y − 1

τ 2
∂2
η + g2τ 2Āη

1Āη

1

)
ax

2

− 2gĀη

1∂ηax
3 = 0, (152)(

∂2
τ + 1

τ
∂τ − ∂2

x − ∂2
y − 1

τ 2
∂2
η + g2τ 2Āη

1Āη

1

)
ax

3

+ 2gĀη

1∂ηax
2 = 0, (153)(

∂2
τ + 1

τ
∂τ − ∂2

x − ∂2
y − 1

τ 2
∂2
η + g2τ 2Āη

1Āη

1

)
ay

2

− 2gĀη

1∂ηay
3 = 0, (154)(

∂2
τ + 1

τ
∂τ − ∂2

x − ∂2
y − 1

τ 2
∂2
η + g2τ 2Āη

1Āη

1

)
ay

3

+ 2gĀη

1∂ηay
2 = 0. (155)

Introducing the functions

X ± ≡ ax
2 ± iax

3, Y ± ≡ ay
2 ± iay

3, (156)
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Eqs. (152)–(155) are diagonalized as(
∂2
τ + 1

τ
∂τ − ∂2

x − ∂2
y − 1

τ 2
∂2
η ∓ igE∂η + 1

4
g2τ 2E2

)
X ±

= 0, (157)(
∂2
τ + 1

τ
∂τ − ∂2

x − ∂2
y − 1

τ 2
∂2
η ∓ igE∂η + 1

4
g2τ 2E2

)
Y ±

= 0, (158)

where we put Āη

1 = − 1
2 E . Since the equations of X ± and Y ±

are identical, further on we discuss only Eq. (157).
Assuming that the functions X ± depend on x, y, and η

through ei(kxx+kyy+νη), Eq. (157) becomes

(
∂2
τ + 1

τ
∂τ + k2

x + k2
y + ν2

τ 2
± gEν + 1

4
g2τ 2E2

)
X ± = 0,

(159)
which is rewritten as(

∂2
τ + 1

τ
∂τ + k2

T + 1

τ 2

(
ν ± 1

2
gτ 2E

)2
)

X ± = 0, (160)

where k2
T = k2

x + k2
y . In the short time limit when τ 2 	

2ν/(gE ), we deal with the Bessel equation of imaginary or-
der iν which is solved by the oscillatory function Jiν (kT τ ).
In the long τ limit when τ 2 � 1/(gE ), τ 2 � 2ν/(gE ), and
τ 2 � k2

T /(g2E2), Eq. (160) becomes independent of ν and
gets the form

(
∂2
τ + 1

4
g2E2τ 2

)
X ± = 0. (161)

The solution is X ± ∼ exp ( ± i
4 gE τ 2), which oscillates with

the period decreasing to zero as τ → ∞. So, the solutions of
Eq. (160), which actually represent waves running away along
the z-axis to plus and minus infinity, are stable.

VI. TEMPORAL EVOLUTION OF GLASMA
BACKGROUND FIELD

The glasma fields are not stationary but they evolve in time.
Consequently, our stability analysis is reliable if the rate of
change of the background field is significantly smaller than
the growth rate of instability found in Sec. IV. To check the
condition, we consider the evolution of glasma fields using the
proper time expansion [27,28]. The potentials α(τ, x⊥) and
α⊥(τ, x⊥) are expanded in the proper time τ as

α(τ, x⊥) = α(0)(x⊥) + τα(1)(x⊥) + τ 2α(2)(x⊥) + · · · ,

(162)

α⊥(τ, x⊥) = α
(0)
⊥ (x⊥) + τα

(1)
⊥ (x⊥) + τ 2α

(2)
⊥ (x⊥) + · · · .

(163)

The zeroth-order functions are given by the boundary
conditions (5) and (6), that is, α

(0)
⊥ (x⊥) = α⊥(0, x⊥) and

α
i(0)
⊥ (x⊥) = αi

⊥(0, x⊥), with i, j = x, y.
One shows that the coefficients multiplying odd powers

of τ in the series (162) and (163) vanish [28], while the

second-order coefficients in the fundamental representation
are given as

α(2) = 1
8 [D j, [D j, α(0)]], (164)

α
i(2)
⊥ = 1

4εzi j[D j, B], (165)

where all quantities are taken at the same point x⊥ and Di ≡
∂ i − igαi(0)

⊥ . The coefficients (164) and (165) are expressed
through the precollision potentials β i

1, β i
2 in the following

way:

α(2) = g

16

( − i∂ j∂ j
[
β i

1, β
i
2

] − g∂ j
[
β

j
1 ,

[
β i

1, β
i
2

]]
− g∂ j

[
β

j
2 ,

[
β i

1, β
i
2

]]] − g
[
β

j
1 + β

j
2 , ∂

j
[
β i

1, β
i
2

]]
+ ig2

[
β

j
1 + β

j
2 ,

[
β

j
1

[
β i

1, β
i
2

]]
+ ig2

[
β

j
1 + β

j
2 ,

[
β

j
2

[
β i

1, β
i
2

]])
, (166)

α
i(2)
⊥ = g

4
εzi jεzkl

(
i∂ j

[
βk

1 , β l
2

] + g
[
β

j
1 + β

j
2 ,

[
βk

1 , β l
2

]])
.

(167)

When β i
1 and β i

2 are independent of x⊥, the second-order
contributions to α and α⊥ are

α(2) = ig3

16

([
β

j
1 + β

j
2 ,

[
β

j
1

[
β i

1, β
i
2

]]
+ [

β
j
1 + β

j
2 ,

[
β

j
2

[
β i

1, β
i
2

]])
, (168)

α
i(2)
⊥ = g2

4
εzi jεzkl

[
β

j
1 + β

j
2 ,

[
βk

1 , β l
2

]]
. (169)

Now, let us assume that the precollision potentials, which
are purely transverse, are β1 = (β1, 0) and β2 = (0, β2).
Then, [β i

1, β
i
2] vanishes and so does the initial electric field

(9). The initial magnetic field (10) equals B = ig[β1, β2]. The
second-order contributions are

α(2) = 0, (170)

α
x(2)
⊥ = g2

4
εzxyεzxy[β2, [β1, β2]] = g2

4
[β2, [β1, β2]], (171)

α
y(2)
⊥ = g2

4
εzyxεzxy[β1, [β1, β2]] = −g2

4
[β1, [β1, β2]].

(172)

Going to the adjoint representation of the SU(2) group, one
finds

α
x(2)
⊥a = g2

4

(
βb

2β
b
1β

a
2 − βb

2β
a
1βb

2

)
, (173)

α
y(2)
⊥a = −g2

4

(
βb

1β
b
1β

a
2 − βb

1β
a
1βb

2

)
. (174)

If βa
1 = λ−1δa3√B/g and βa

2 = λδa2√B/g, the second-
order contributions to α⊥a are

α
x(2)
⊥a = − 1

4δa3λg1/2B3/2, (175)

α
y(2)
⊥a = − 1

4δa2λ−1g1/2B3/2. (176)

Taking into account the zeroth- and second-order contribu-
tions in proper time expansion, the function αa and the x and
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y components of the function α⊥a are equal to

αa = O(τ 4),

αx
⊥a = δa3λ−1

√
B/g

(
1 − 1

4λ2gBτ 2 + O(τ 4)
)
,

α
y
⊥a = δa2λ

√
B/g

(
1 − 1

4λ−2gBτ 2 + O(τ 4)
)
. (177)

One observes that the potential (177) generates the zeroth- and
second-order longitudinal magnetic field and the first-order
transverse electric field.

VII. DISCUSSION AND CONCLUSIONS

In our stability analysis, the electric and magnetic fields are
assumed to be space-time uniform. However, the glasma fields
generated at the earliest phase of ultrarelativistic heavy-ion
collisions are not uniform, neither spatially nor temporally.
So, one asks to what extent our results apply to the description
of real glasma.

The correlators of glasma fields, discussed, e.g., in Sec. III
D of [30], show that the fields are spatially uniform in the
transverse plane at a scale L that is in between Q−1

s and
�−1

QCD, where Qs ≈ 2 GeV is the saturation scale and �QCD ≈
0.2 GeV is the QCD confinement scale at which color charges
are neutralized. Assuming that the domain, where the field is
uniform, is a square centered at r⊥ = 0 and demanding that
the real potentials ax

a and ay
a vanish at the edge of the square,

the wave vectors kx, ky should be replaced as

(kx, ky) −→ (2lx + 1, 2ly + 1)
π

L
, (178)

where lx, ly are integer numbers. Consequently, a spectrum of
eigenmodes becomes discrete and the unstable mode found
in Sec. IV can disappear if the minimal momentum π/L is
sufficient to stabilize it. Using the growth rate of the instability
estimated as

√
gB − 1

3 k2
T , one finds that due to the replacement

(178), the instability appears if

gB >
2π2

3L2
. (179)

Since g ≈ 1 and B ≈ Q2
s ≈ 4 GeV2, the condition (179) is sat-

isfied for L−1 ≈ �QCD ≈ 0.2 GeV. Taking into account that
the generation of chromodynamic fields in heavy-ion colli-
sions is a random process and consequently a magnitude of the
field and a size of the domain, where the field is uniform, vary
both in an individual collision and from collision to collision,
we expect that the condition (179) is not always satisfied, but
it often is and then the unstable mode occurs.

The initial glasma fields are not stationary, and as discussed
in Sec. VI, the magnetic field changes with the characteristic
rate gBτ , where we set λ = 1. It is smaller than the instabil-
ity growth rate estimated as

√
gB when τ < (gB)−1/2 but it

is bigger when τ > (gB)−1/2. This suggests that the initial
magnetic field can be treated as stationary only for a very
short time. However, one should take into account that our
estimate of the field rate of change is obtained in the second
order of the proper time expansion. The calculations using
the proper time expansion, which are presented in, e.g., [30],
show that there are usually alternating signs of successive
terms in the proper time expansion, and consequently the

temporal evolution is significantly slower than a second-order
result suggests. Therefore, we expect that the initial magnetic
field can be treated as stationary for a timescale (gB)−1/2 or
even longer.

Let us now confront our findings with results of the sim-
ulations of glasma evolution [3,4], which actually were the
main motivation of our work. The simulations showed that
the glasma is unstable, and the instability was identified with
the Weibel mode [3,4]. We first note that the fastest unstable
mode found in [3,4] grows like e

√
τ while that of the glasma

initial magnetic field grows like eτ . The discrepancy can be
removed taking into account that the longitudinal magnetic
field decreases, as our formulas (177) show. However, we are
not going to pursue this path as there are more important
reasons not to interpret the results of the simulations [3,4] as
due to the glasma initial field instability.

When the fastest growing mode found in [3,4] is fitted with
eγ τ , the maximal growth rate is γ ≈ 0.002 72 g2μ, where μ

is the surface density of color charges of incoming nuclei.1

Using the authors’ estimate g2μ ≈ 20 fm−1 for LHC, we get
γ ≈ 0.05 fm−1. The maximal growth rate of the unstable
mode of the glasma initial field is

√
gB ≈ Qs and it occurs for

kT = 0 and λ = 1. Estimating the saturation scale as Qs = 2
GeV, the maximal growth rate is

√
gB ≈ 10 fm−1, which is

200 times bigger than that from [3,4]. Although, the growth
rate is smaller for kT > 0 and/or λ �= 1, it is hard to expect
that the two very different growth rates describe the same
physical phenomenon.

In the glasma simulations [3,4], the instability shows up
only if the initial condition includes fluctuations that depend
on the space-time rapidity η and consequently violate the
boost invariance. This is actually the crucial argument to
identify the instability as the Weibel mode, which requires a
finite longitudinal momentum [7]. The unstable mode of the
initial glasma field can occur at any ν including ν = 0 which
corresponds to the boost invariant configuration. While the
growth rate is independent of ν, the modes start growing at
τ = ν/

√
gB. The mode with ν = 0, which is independent of

η, starts with no delay and consequently it is dynamically most
important.

The instabilities of initial glasma fields we have studied
analytically here are presumably responsible for a rapid tem-
poral evolution of glasma field correlators investigated in
[29] using numerical simulations. The authors of Ref. [29]
found that the correlator of chromomagnetic fields, which are
initially uniform, changes with a characteristic time of the
order Q−1

s . However, a more detailed analysis is necessary to
confirm the supposition.

We conclude our considerations as follows. The initial
glasma field configuration is unstable if the fields are suf-
ficiently uniform both spatially and temporally. Since the
process of generation of chromodynamic fields in heavy-ion
collisions is stochastic and the field’s characteristics fluctuate,
we expect that the condition of uniformity is often satisfied.

1We have taken into account the factor of 2 as the growth of the
energy-momentum tensor, not the growth of the field, was obtained
in [3,4].
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The time of the instability development is of order 0.1 fm/c,
which is much shorter than that of the instability found in
the glasma simulations [3,4], which is of order 10 fm/c. The
fastest unstable mode of the initial glasma field is boost invari-
ant in contrast to the Weibel mode advocated in [3,4], which
requires breaking of the boost invariance. So, we conclude that
the instability found in the study [3,4] is not the instability
of the glasma initial field. To observe the initial glasma field
instability, if it indeed occurs, one needs a glasma simulation
of high temporal resolution, much higher than that from [3,4].
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APPENDIX: BESSEL EQUATIONS

The Bessel equation is

( d2

dx2
+ 1

x

d

dx
+ 1 − α2

x2

)
f (x) = 0, (A1)

and its two linearly independent solutions are the Bessel func-
tions

Jα (x) ≡
∞∑

m=0

(−1)m

m! �(m + α + 1)

( x

2

)2m+α

, (A2)

Yα (x) ≡ Jα (x) cos(απ ) − J−α (x)

sin(απ )
, (A3)

which oscillate around zero for x ∈ R. At x = 0 the func-
tions Jα (x) are finite but Yα (x) diverge. For x � |α2 − 1

4 | the

following approximation holds:

Jα (x) =
√

2

πx
cos

(
x − π

2
α − π

4

)
+ O(x−3/2). (A4)

Changing the variable x = it , Eq. (A1) becomes the modi-
fied Bessel equation( d2

dt2
+ 1

t

d

dt
− 1 − α2

t2

)
g(t ) = 0, (A5)

where g(t ) = f (it ) and the two linearly independent solutions
are the modified Bessel functions

Iα (t ) ≡ i−αJα (it ) =
∞∑

m=0

1

m! �(m + α + 1)

(
t

2

)2m+α

, (A6)

Kα (t ) ≡ π

2

I−α (t ) − Iα (t )

sin(απ )
. (A7)

The functions Iα (t ) are finite at t = 0 and grow exponentially
with t for t ∈ R. The functions Kα (t ) are infinite at t = 0 and
decay exponentially as t grows. For t � |α2 − 1

4 | we have the
approximation

Iα (t ) = et

√
πt

(1 + O(t−1)). (A8)

Changing the variable x = aτ in Eq. (A1) and the variable
t = aτ in Eq. (A5), the Bessel and modified Bessel equa-
tions read (

d2

dτ 2
+ 1

τ

d

dτ
+ a2 − α2

τ 2

)
h(τ ) = 0, (A9)

(
d2

dτ 2
+ 1

τ

d

dτ
− a2 − α2

τ 2

)
h(τ ) = 0, (A10)

where h(τ ) ≡ f (aτ ) or h(τ ) ≡ g(aτ ). The solutions are
Jα (aτ ),Yα (aτ ) and Iα (aτ ), Kα (aτ ), respectively.
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