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Physical characteristics of glasma from the earliest stage of relativistic heavy ion collisions
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We present some analytic results that describe the gluon field, or glasma, that exists at very early times after a
collision of relativistic heavy ions at proper time τ = 0. We use a color glass condensate approach, and perform
an expansion in τ . The full details of our calculational method are described in our previous paper [Carrington,
Czajka, and Mrówczyński, Eur. Phys. J. A 58, 5 (2022)], where we have explained all of the steps that are
necessary to obtain the energy-momentum tensor up to sixth order in τ . In this paper we present an analysis of
various physical quantities that can be obtained from this energy-momentum tensor. We show that the expansion
to order τ 6 can be trusted to about τ = 0.05 fm. We calculate the transverse and longitudinal pressures and
show that, for times small enough that the expansion converges, they move towards their equilibrium values of
one third of the energy density. We also study the spatial eccentricity of the glasma and the Fourier coefficients
of the azimuthal flow. Our results for the Fourier coefficients are larger than expected, which contradicts the
usual assumption that anisotropy is mostly generated during the hydrodynamic evolution of the plasma. We
find a significant correlation between the elliptic flow coefficient and the eccentricity, which indicates that the
spatial asymmetry introduced by the initial geometry is effectively transmitted to the azimuthal distribution of
the gluon momentum field, even at very early times. This result is interesting because correlations of this kind
are characteristic of the onset of hydrodynamic behavior. Finally, we have calculated the angular momentum of
the glasma and obtained results that are many orders of magnitude smaller than the angular momentum of the
initial system of colliding ions in a configuration with nonzero impact parameter. This indicates that most of
the angular momentum carried by the valence quarks is not transmitted to the glasma. The result is significant
because it contradicts the picture of a rapidly rotating initial glasma state that has been proposed by several
authors, but agrees with the current lack of experimental evidence for a significant polarization effect of the
hyperons and vector mesons produced in heavy ion collisions at the highest accessible energies.

DOI: 10.1103/PhysRevC.106.034904

I. INTRODUCTION

We use a formulation of the color glass condensate (CGC)
effective theory to describe the dynamics of a heavy-ion
collision in the early stages after the collision (τ � 1 fm).
Many reviews of the CGC effective theory have been pub-
lished; see for example [1,2]. The details of the evolution of
a quark-gluon plasma (QGP) during this early stage are not
well understood, but they are important because they provide
the initial conditions for subsequent hydrodynamic evolu-
tion. The CGC approach is based on a separation of scales
between valence partons with large nucleon momentum frac-
tion and gluon fields with small nucleon momentum fraction.
When the separation scale is fixed, the dynamics of the gluon
fields can be determined from the classical Yang-Mills (YM)
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equation with the source provided by the valence partons, by
averaging over an ensemble of valence parton color charge
distributions.

This paper is a companion paper to a previous work [3]
in which we have explained the strategy of our approach and
some details of the calculational method. We use an expansion
in the proper time, also called a “near field” expansion [4–8].
We work with infinitely Lorentz contracted sources, and the
description of the system is classical. An advantage of the
method, however, is that our results are analytic, and thus
provide a potentially valuable alternative approach to the var-
ious numerical methods that are in use. In Ref. [3] we focused
on the technical details of the calculation and showed only a
few results, which were obtained for the simple case of nuclei
that are infinite in the transverse plane and uniform. In this
paper we consider more physically realistic collisions where
the nuclear area density function is not assumed constant. We
present results from several different calculations and discuss
their connection to experimental observables.

In Sec. II we define some notation and give a summary
of the results of our previous paper. In Sec. III we de-
scribe the structure of the energy-momentum tensor in Milne
coordinates and, by exploiting the symmetries of the tensor,
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we give a fairly compact analytic expression for our result
to order τ 2. The order τ 4 results are given in Appendix B.
We also formulate a calculation of the angular momentum of
the glasma per unit rapidity, on a hypersurface of constant
proper time. In Sec. IV we present some numerical results
and discuss their significance in the context of heavy-ion
collisions at the Relativistic Heavy Ion Collider (RHIC) and
the Large Hadron Collider (LHC). In Sec. IV A we define our
notation for the geometry of the collision and the units we
will use. In Sec. IV B we discuss our method to implement
nonconstant nuclear area density functions, which is based
on a gradient expansion of a two dimensional projection of
a Woods-Saxon distribution. We follow the method of [7] and
discuss carefully the limitations of the expansion and how its
convergence depends critically on what quantity is calculated.
In Secs. IV C and IV D we study the energy density and pres-
sure of the glasma. For a system in equilibrium the transverse
and longitudinal pressures are equal to each other, and individ-
ually equal to a third of the energy density. A calculation of the
pressure therefore gives information about how far the glasma
is from equilibrium. We show that, for times small enough
that the expansion converges, the transverse and longitudinal
pressures move towards their equilibrium values. We calculate
a quantity that describes the asymmetry between the trans-
verse and longitudinal pressures, and one that characterizes
the difference between the two components of the transverse
pressure. We show that the first is almost completely insensi-
tive to the gradient expansion, but the second shows strong
dependence. In Sec. IV E we study the flow of the energy
of the gluon field by calculating the radial projection of the
Poynting vector. Our results in this section, and the previous
two sections, indicate that the expansion to order τ 6 can be
trusted to about τ = 0.05 fm. In our previous paper [3] we
have given a simple argument that this time is much greater
than the lower bound at which we no longer trust the classical
description that is inherent in our approach. In Sec. IV F we
study the momentum anisotropy of the glasma by calculating
the Fourier coefficients of the azimuthal distribution of the
flow. Anisotropy is an important characteristic because it is
primarily sensitive to the properties of the system very early
in its evolution. It is expected that the spatial anisotropy of the
system that is produced at very early times (within the first few
fm) will be encoded in the observed anisotropies of the final
particle momentum distributions. Our results for the Fourier
coefficients are larger than expected, which does not agree
with the common assumption that momentum anisotropy is
mostly generated during the hydrodynamic evolution of the
plasma. In Sec. IV G we consider the spatial azimuthal asym-
metry of the glasma by calculating the eccentricity. We look
for correlations between spatial asymmetry and momentum
anisotropy, which is characterized by the Fourier coeffi-
cients calculated in the previous section. Since momentum
anisotropy originates in the initial spatial asymmetries in the
geometry of the system, such correlations provide information
about the effect of the interactions, and the expansion of the
system, during glasma formation. We find significant correla-
tion between the eccentricity and the elliptic flow coefficient
calculated in the previous section, which indicates that the
spatial asymmetry of the initial energy density is converted

into the anisotropy of the azimuthal distribution of the gluon
momentum field, and this correlation is characteristic of hy-
drolike behavior. In Sec. IV H we look at the angular momen-
tum of the glasma, which develops in collisions with nonzero
impact parameter, in the direction perpendicular to the reac-
tion plane. It has been proposed that, because of spin-orbit
coupling effects, the angular momentum of the glasma could
lead to the polarization of produced quarks and antiquarks,
which might be detected by measuring the polarization of the
� hyperon or various vector mesons [9]. Measurements of
this kind could be used to compare different hydrodynamic
models and hadronization scenarios [10]. Our results are many
orders of magnitude smaller than the initial angular momen-
tum of two ions colliding with nonzero impact parameter.
Our findings therefore disagree with the proposal that the
glasma acquires a large fraction of the angular momentum of
the participating valence quarks [10], but is not contradicted
by any experimental evidence, since attempts to measure the
polarization of produced hadrons have found only very small
effects [11,12]. In Sec. V we conclude with some discussion
and comments on possible future directions of this research.

II. SUMMARY OF PREVIOUS WORK

A. Energy-momentum tensor

In a previous paper [3] we calculated the energy-
momentum tensor using the CGC effective theory, to sixth
order in an expansion in the proper time. In this section, we
review the main elements of that calculation.

We consider a collision of two ions moving towards each
other along the z axis and colliding at t = z = 0. In the pre-
collision region of space-time, the system is most naturally
described using light-cone coordinates, but in the postcolli-
sion region Milne coordinates are more convenient. At the end
of the calculation, when we look at physical quantities, we
usually want to use Minkowski coordinates. The calculation
is done most efficiently by using the three different coordinate
systems at different stages, and transforming between them as
needed. We will use greek letters for 4-indices, and latin letters
for 2-indices denoting coordinates in the transverse plane. For
example, the components of a position 4-vector in Minkowski
coordinates (t, z, x, y) are written xμ with μ ∈ (0, 1, 2, 3), and
the transverse components are denoted xi with i ∈ (2, 3). In
light-cone and Milne coordinates, the time and longitudinal
coordinates are defined as functions of the Minkowski vari-
ables (t, z), but the transverse coordinates are the same in all
three bases. Our notation for light-cone and Milne variables is
standard, and is reviewed in Appendix A.

The vector potential of the gluon field is described with the
ansatz [13]

A+(x) = �(x+)�(x−)x+α(τ, �x⊥),

A−(x) = −�(x+)�(x−)x−α(τ, �x⊥),

Ai(x) = �(x+)�(x−)αi
⊥(τ, �x⊥) + �(−x+)�(x−)

×β i
1(x−, �x⊥) + �(x+)�(−x−)β i

2(x+, �x⊥). (1)

The functions β i
1(x−, �x⊥) and β i

2(x+, �x⊥) represent the
precollision potentials, and the functions α(τ, �x⊥) and
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αi
⊥(τ, �x⊥) give the postcollision potentials. In the forward

light cone the vector potential satisfies the sourceless YM
equation. We find solutions valid for early postcollision times
by expanding in the proper time τ [4–8]. Using these solu-
tions we can write the postcollision field-strength tensor and
energy-momentum tensor in terms of the initial potentials
α(0, �x⊥) and �α⊥(0, �x⊥). The initial potentials are related to
the physical properties of the ions and the geometry of the
collision using boundary conditions that connect the precolli-
sion and postcollision potentials. These conditions are found
by integrating the YM equation across the light cone [3,13],

αi
⊥(0, �x⊥) = α

i(0)
⊥ (�x⊥) = lim

w→0

[
β i

1(x−, �x⊥) + β i
2(x+, �x⊥)

]
,

α(0, �x⊥) = α(0)(�x⊥) = − ig

2
lim
w→0

[
β i

1(x−, �x⊥), β i
2(x+, �x⊥)

]
,

(2)

where the notation limw→0 indicates that the width of the
sources across the light cone is taken to zero (the precollision
potentials depend only on transverse coordinates in this limit).
Using Eqs. (1) and (2) the energy-momentum tensor can be
written in terms of the precollision potentials �β1(x−, �x⊥) and
�β2(x+, �x⊥) and their derivatives.

The next step is to use the YM equation to write the prec-
ollision potentials in terms of the color charge distributions
of the incoming ions. One then averages over a Gaussian
distribution of color charges within each nucleus. The average
of a product of color charges can be written as a sum of
terms that combine the averages of all possible pairs, which
is called Wick’s theorem. The average of a product of pre-
collision potentials, which depend on the color charges in a
nontrivial way, is much more difficult to calculate, and the
calculation becomes more and more complicated as the num-
ber of potentials increases [14–18]. We use the glasma graph
approximation [18], which was also used in other near field
expanded calculations, and is equivalent to the application
of Wick’s theorem to light-cone potentials directly. In our
previous work [3] we showed that, for the simple case of
homogeneous ions that are infinite in the transverse plane,
there is some evidence that the effect of this approximation
is small. We stress, however, that the range of validity of the
glasma graph approximation has not been carefully studied,
and this is an open and important issue.

In the context of our calculation, the use of the glasma
graph approximation means that the energy-momentum tensor
can be written in terms of the two-point correlators of the pre-
collision potentials. This correlator was originally calculated
in Ref. [19] and generalized to include some effects of nuclear
structure in Ref. [7]. We give below the result in our notation;
see [3] for further details.

The correlator of two potentials from different ions is as-
sumed to be zero. The two-point correlator for two potentials
from the same ion is written in terms of the color charge sur-
face density for that ion, which we denote μ1(�x⊥) and μ2(�x⊥).
These functions are not determined by the CGC model; rather,
one assumes some form constrained by experimental knowl-
edge. We use a two-dimensional projection of a Woods-Saxon
distribution which is characterized by three parameters that

correspond to the surface thickness, radius, and displacement
of the center of the ion relative to the beam axis (for details
see Sec. II B). The two-point correlators for the two ions have
the form

δabBi j
1 (�x⊥, �y⊥) ≡ lim

w→0
〈β i

1 a(x−, �x⊥)β j
1 b(y−, �y⊥)〉,

δabBi j
2 (�x⊥, �y⊥) ≡ lim

w→0
〈β i

2 a(x+, �x⊥)β j
2 b(y+, �y⊥)〉, (3)

and using the index n ∈ {1, 2} to represent the two ions we
have

Bi j
n (�x⊥, �y⊥) = g2

(
eg4Nc �γ̃n(�x⊥,�y⊥ ) − 1

g4Nc�γ̃n(�x⊥, �y⊥)

)
∂ i

x∂
j

y γ̃n(�x⊥, �y⊥), (4)

where

�γ̃n(�x⊥, �y⊥) = γ̃n(�x⊥, �y⊥) − 1

2
[γ̃n(�x⊥, �x⊥) + γ̃n(�y⊥, �y⊥)],

(5)

γ̃n(�x⊥, �y⊥) =
∫

d2z⊥ μn(�z⊥) G(�x⊥ − �z⊥) G(�y⊥ − �z⊥), (6)

G(�x⊥) = 1

2π
K0(m|�x⊥|). (7)

The function K0 is a modified Bessel function of the second
kind, and m is an infrared regulator. In the limit m → 0 the
Green’s function G(�x⊥) goes like ∼ ln(m|�x⊥|). Since valence
parton sources come from individual nucleons, the Green’s
function should go to zero when |�x⊥| approaches the confine-
ment scale, and therefore we choose m ∼ �QCD.

B. Parton surface density

To make further progress we must specify the form of
the color charge surface density of the nuclei. We will use
a two-dimensional projection of a Woods-Saxon potential of
the form

μ(�x⊥) =
( A

207

)1/3 μ̄

2a ln(1 + eRA/a)

×
∫ ∞

−∞
dz

1

1 + exp[(
√

(�x⊥)2 + z2 − RA)/a]
. (8)

The parameters RA and a give the radius and skin thickness of
a nucleus of mass number A, and their numerical values are
discussed in Sec. IV B. The integral in (8) is normalized so
that for a lead nucleus μ(�0) = μ̄, which is sometimes called
the McLerran-Venugopalan (MV) scale. This parameter is
related to the saturation scale Qs, but its exact value cannot
be determined within the CGC approach (for a discussion see
[20]). We use μ̄ = Q2

s /g4, and some motivation for this choice
can be found in [3]. Due to the ambiguity associated with
the value of the MV scale, our numerical results for quanti-
ties like the energy density and pressure should be regarded
as order-of-magnitude estimates. Quantities that depend on
ratios of different elements of the energy momentum tensor,
like Fourier coefficients of the azimuthal flow, will have much
weaker dependence on the MV scale.

We obtain an analytic result for the energy-momentum
tensor by substituting Eq. (8) into Eq. (6) and performing a
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gradient expansion, using the method developed in Ref. [7].
The coordinates �x⊥ and �y⊥ are rewritten in terms of relative
and average coordinates. To consider collisions with nonzero
impact parameter we expand the distribution μ1(�z⊥) around
the average coordinate (�x⊥ + �y⊥)/2 = �R − �b/2, and μ2(�z⊥)
around (�x⊥ + �y⊥)/2 = �R + �b/2. We will keep terms up to
second order in gradients of the distribution. The parameter
that we assume to be small is

δ =
∣∣∇ iμ

( �R ± �b
2

)∣∣
mμ

( �R ± �b
2

) , (9)

where the gradient operator indicates differentiation with re-
spect to the argument of the function. The region of validity
of this expansion is discussed in Sec. IV B.

We remind the reader that for a realistic nucleus, which
is made up of individual partons, the transverse charge dis-
tribution is not a very smooth function. It is possible that
the transverse charge distribution of a real nucleus could be
sufficiently irregular that a Woods-Saxon distribution is not a
good representation.

C. Two-particle correlators

In this subsection we drop the subscript that indicates
which ion is being considered, and we set �b = 0. Performing
the derivative expansion and keeping terms up to second order
in gradients of μ, Eq. (6) becomes

γ̃ (�x⊥, �y⊥) = μ( �R)r

4πm
K1(mr) + 1

2
∇ i∇ jμ( �R)

×
(

δi j r2

24πm2
K2(mr) + rir j

r2

r3

48πm
K1(mr)

)
.

(10)

We can rewrite equation (10) in the form

γ̃ (�x⊥, �y⊥) = μ( �R)
∫

d2k

(2π )2

ei�r·�k

(k2 + m2)2

+ m2

2
∇2μ( �R)

∫
d2k

(2π )2

ei�r·�k

(k2 + m2)4 , (11)

where we have made the replacement r̂i r̂ j → δi j/2, because
in the limit �r → 0 we know γ̃ must be independent of the
direction of the vector r̂. We note we are able to make this
replacement before performing any derivatives with respect to
�x⊥ and �y⊥, since limr→0 ∂ i

x · · · ∂ j
y · · · r̂k r̂l = 0, where the dots

indicate any number of derivatives.
The correlator Bi j (�x⊥, �y⊥) and its derivatives have ultra-

violet divergences that must be regulated. We use a modified
version of the method proposed in Ref. [6]. To illustrate how
we make use of Eq. (11) we consider, for example, the calcu-
lation of

∂ i
x∂

j
y γ̃ (�x⊥, �y⊥) = μ( �R)

∫
d2k

(2π )2

kik jei�r·�k

(k2 + m2)2

+ m2

2
∇2μ( �R)

∫
d2k

(2π )2

kik jei�r·�k

(k2 + m2)4 , (12)

which appears in the expression for Bi j in Eq. (4). The integra-
tion over angular variables gives kik j → δi jk2/2. The second
term in (12) is finite, but the first term is logarithmically
divergent and we regulate it using an ultraviolet momentum
cutoff �. This cutoff will be set to the saturation scale; see
our previous paper [3] for some discussion of this point. In
Sec. IV D 1 we test the dependence of some of our results on
the saturation scale, and show that they are not very sensitive
to its numerical value.

Now we consider the contribution from the factor in round
brackets in equation (4). Expanding this factor we have

eg4Nc �γ̃n(�x⊥,�y⊥ ) − 1

g4Nc�γ̃n(�x⊥, �y⊥)
= 1 + 1

2
g4Nc�γ̃ (�x⊥, �y⊥)

+ 1

6
[g4Nc�γ̃ (�x⊥, �y⊥)]2 + · · · (13)

When we calculate derivatives of the correlator Bi j (�x⊥, �y⊥),
the derivatives operate on all terms in the expansion in
Eq. (13). At sixth order in the τ expansion the energy-
momentum tensor includes terms with six derivatives acting
on the correlator in Eq. (4). Naively it would seem that we
need to expand the exponent in Eq. (13) to seventh order,
since each of the six derivative operators will have a piece
proportional to ∂/∂ri which could act separately on each of
the six factors in the term [�γ̃ (�x⊥, �y⊥)]6. For example, if
we differentiate six times with respect to r1 we obtain an
expression of the form

lim
�r→0

(
∂

∂r1

)6

[�γ̃ (�x⊥, �y⊥)]6 = lim
�r→0

(
∂

∂r1
γ̃ (�x⊥, �y⊥)

)6

+ · · ·,

(14)

where the dots represent additional terms that give zero when
�r is taken to zero. However, it is easy to see from Eq. (11)
that if we differentiate γ̃ an odd number of times with respect
to r1 or r2, the integration over momentum variables gives
zero. This means terms with more than three factors of �γ̃ ,
which are operated on with a maximum of six derivatives with
respect to components of �r, can be set to zero. Equivalently,
we have to expand the exponential only to fourth order.

All correlators and their derivatives can be obtained using
the method described above. We give one example:

lim
r→0

Bi j (�x⊥, �y⊥)

= δi jg2 μ( �R)

8π

[
ln

(
�2

m2
+ 1

)
− �2

�2 + m2

]

+ g2

16π (�2 + m2)

[
δi j∇2μ( �R)

�4

6m2(�2 + m2)

×
(

1 + 2m2

�2 + m2

)
+ ∇ i∇ jμ( �R)

�2

m2

]
. (15)

III. ANALYTIC RESULTS

A. Structure of the energy-momentum tensor

In this section we present our analytic result for the energy-
momentum tensor, to order τ 6. For simplicity of notation we
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give our results for the tensor in Milne coordinates, where
there is no dependence on rapidity. All elements in the energy-

momentum tensor have either even or odd powers of τ . We
summarize this information in the symbolic equation

O(
Tmilne

) =

⎛
⎜⎜⎜⎜⎝

(0, 2, 4, 6) (1, 3, 5) (1, 3, 5) (1, 3, 5)

(1, 3, 5) (−2, 0, 2, 4) (0, 2, 4) (0, 2, 4)

(1, 3, 5) (0, 2, 4) (0, 2, 4, 6) (2, 4, 6)

(1, 3, 5) (0, 2, 4) (2, 4, 6) (0, 2, 4, 6)

⎞
⎟⎟⎟⎟⎠. (16)

The top left element of the tensor shows that the element T 00

has contributions of order τ 0, τ 2, τ 4, and τ 6. To give one
other example, the entry in the top right corner shows that
the element T 03 has contributions of order τ , τ 3, and τ 5.

We do not need to give all components of the energy-
momentum tensor because of its symmetry properties. We will
give our results for the six elements in Eq. (17) that are written
in boldface. All of the other elements in the tensor can be
generated from these using symmetries, as explained below.
We emphasize that we have calculated all elements of the
energy-momentum tensor, and the symmetries summarized in
Eq. (17) have been verified, and not assumed.

All elements below the diagonal can be related to elements
above the diagonal using the fact that the tensor is symmetric.
In Eq. (17) we write, for example, T 10 = T 01. There are also
pairs of elements where one can be obtained from the other us-
ing the transformation ∇x ↔ ∇y, where we have defined ∇x ≡
∂/∂Rx and ∇y ≡ ∂/∂Ry. We will also use ∇2 ≡ ∇2

x + ∇2
y . For

example, we write T 13 = FT 12 to indicate that the element
T 13 can be obtained from T 12 by interchanging the derivative
operators ∇x and ∇y. Finally, since the energy-momentum

tensor is traceless it satisfies gμνT μν = 0, which means that
we do not have to give all elements on the diagonal. We
replace the element T 11 with the symbol Tr to indicate that
this matrix element can be constructed from the other diagonal
elements of the tensor. Combining this information we write

Tmilne −→

⎛
⎜⎜⎜⎜⎝

T00 T01 T02 FT 02

T 01 Tr T12 FT 12

T 02 T 12 T22 T23

T 03 T 13 T 23 FT 22

⎞
⎟⎟⎟⎟⎠. (17)

In summary, Eq. (17) tells us that we need to give only the six
elements of the energy-momentum tensor that are written in
boldface.

B. Coefficients of the energy-momentum tensor

We give generic equations for these elements organized
by powers of τ and numbers of derivatives with respect to
each of the transverse coordinates. Our result for the energy-
momentum tensor has the form

T 00 = E00
0 + (1 + F )E02

0 + τ 2
(

1
6∇2E00

0 + E00
2 + (1 + F )E20

2

) + τ 4
(

1
10∇2E00

2 + E00
4 + (1 + F )E02

4

) + τ 6
[E00

6 + (1 + F )E02
6

]
,

T 01 = − 1
8 (1 + F )

(
2τ∇xβ

10
0 + 4

3τ 3∇xβ
10
2 + τ 5∇xβ

10
4

)
,

T 02 = − 1
2τ∇xE00

0 − 1
2τ 3∇xE00

2 − 1
2τ 5∇xE00

4 ,

T 12 = β10
0 + τ 2β10

2 + τ 4β10
4 ,

T 22 = E00
0 + (1 + F )E02

0 + τ 2
(
2E00

2 + δ20
2 + δ02

2

) + τ 4
(
3E00

4 + δ20
4 + δ02

4

) + τ 6
(
4E00

6 + δ20
6 + δ02

6

)
,

T 23 = τ 2γ 11
2 + τ 4γ 11

4 + +τ 6γ 11
6 . (18)

For each of the greek letter variables in Eq. (18) the subscript
gives power of τ that multiplies the variable when it is not
acted on by any external derivatives, and the superscripts give
the number of internal derivatives with respect to Rx and Ry.
For example, the second term in T 12 contains the variable β10

2
which has coefficient τ 2 and is defined [see Eq. (20)] as a sum
of terms each of which has one derivative with respect to Rx.

We use X to denote any of the greek letters {E, β, γ , δ, ξ}.
We give below our results for X lm

n with 0 � n � 2. In Ap-
pendix B we give our results for X lm

n with n = 4. Each symbol
is either even or odd under the transformation μ1 ↔ μ2,
and therefore we only need to give half of the terms, and
the sign of the symmetry. We set the ultraviolet cutoff �

equal to the saturation scale Qs and introduce the notation
L ≡ ln(Qs/m). To save space we give only the contributions
that are leading order in an expansion in the infrared mass
m, and this power counting is done with the assumption
(∇x )ni (∇y)n j μ1( �R)/μ1( �R) ∼ mni+n j [and similarly for μ2( �R)].
We will also factor the constant μ̄ ≡ Q2

s /g4 out of the source
density functions and define μ̂1( �R) ≡ μ1( �R)/μ̄, and similarly
for ion 2. To save space we will use the shorthand notation
μ̂10

1 ≡ ∇xμ̂1( �R), μ̂11
1 ≡ ∇x∇yμ̂1( �R), etc. We emphasize that in

all of our numerical calculations there is no expansion in m,
and we include all contributions from the gradient expansion
up to second order.
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Using the notation defined above, the coefficients of the
energy-momentum tensor at order τ 0 have the simple form

E00
0 = 3μ̂1μ̂2Q4

s

8π2g2
(2L − 1)2 + (μ̂1 ↔ μ̂2),

β10
0 = 3μ̂1Q4

s μ̂
10
2

8π2g2
(2L − 1)2 − (μ̂1 ↔ μ̂2),

E02
0 = μ̂1Q4

s μ̂
02
2

4π2g2m2
(2L − 1) + (μ̂1 ↔ μ̂2). (19)

At order τ 2 we have

β10
2 = 27μ̂1Q6

s

512π3g2

(
(2L − 1)

{
11μ̂2(1 − 2L)2μ̂10

1

+ [11μ̂1(1 − 2L)2 − 8π ]μ̂10
2

}) − (μ̂1 ↔ μ̂2),

γ 11
2 = 9μ̂1Q6

s

512π3g2m2

(
(1 − 2L)2

(
8μ̂2μ̂

11
1

+ 7μ̂1μ̂
11
2

)) + (μ̂1 ↔ μ̂2),

δ02
2 = − μ̂1Q6

s

1024π3g2m2

(
750μ̂2(2L − 1)2μ̂02

1

+ [447μ̂1(2L − 1)2 + 128π ]μ̂02
2

) + (μ̂1 ↔ μ̂2),

δ20
2 = − μ̂1Q6

s

1024π3g2m2

(
606μ̂2(1 − 2L)2μ̂20

1

+ [321μ̂1(1 − 2L)2 + 128π ]μ̂20
2

) + (μ̂1 ↔ μ̂2),

E00
2 = −3μ̂1μ̂2(2L − 1)Q6

s

16π3g2
(3μ̂2(2L − 1)2 + π )

+ (μ̂1 ↔ μ̂2),

E02
2 = − μ̂1Q6

s

1024π3g2m2

(
339μ̂2(2L − 1)2μ̂02

1

+ 64[3μ̂1(2L − 1)2 + π ]μ̂02
2

) + (μ̂1 ↔ μ̂2). (20)

C. Angular momentum

In this section we derive an expression for the angular
momentum of the glasma per unit rapidity. Our method is
similar to that of Ref. [8]. We define the tensor

Mμνλ = T μνRλ − T μλRν, (21)

where Rμ denotes a component of the position vector
(τ, η, �R). The energy momentum tensor is divergenceless,
and therefore the tensor in Eq. (21) satisfies the tensor equa-
tion ∇μMμνλ = 0. Using Stokes’ theorem one obtains a set of
six conserved quantities,

Jνλ =
∫

�

d3y
√

|γ |nμMμνλ, (22)

where nμ is a unit vector perpendicular to the hypersurface
�, γ is the induced metric on this hypersurface, and d3y is
the corresponding volume element. The angular momentum
is obtained from the Pauli-Lubanski vector

Lμ = − 1
2εμαβγ Jαβuγ , (23)

where uγ is the vector that denotes the rest frame of the
system. One can easily verify that Eqs. (21)–(23) reduce to the
usual definition of angular momentum in Minkowski space.
We denote indices for spatial variables in Minkowski space
with underscored latin letters, for example i ∈ (1, 2, 3) and xi

is a component of the vector (x, y, z). We use nμ = (1, 0, 0, 0)
so that � is a hypersurface of constant t , and with uγ =
(1, 0, 0, 0) Eq. (23) becomes

Li
mink = −1

2
εi jkJ jk = −1

2
εi jk

∫
d3�x (T 0 jxk − T 0kx j )

= εi jk
∫

d3�x x jPk, (24)

where d3�x represents the spatial volume element in
Minkowski space, and we have written the Poynting vector
Pi ≡ T 0i.

We work in Milne coordinates and use nμ = (1, 0, 0, 0) so
that

Jνλ = τ

∫
dη d2 �R M0νλ (25)

is defined on a hypersurface of constant τ . Using uγ =
(1, 0, 0, 0) gives

Lμ = 1

2
τ ε0μαβ

∫
dη

∫
d2 �R (T 0αRβ − T 0βRα ). (26)

In our calculation angular momentum is not conserved, be-
cause the currents on the light cone act as sources, and
therefore we consider instead the angular momentum per unit
rapidity. From Eq. (26) we obtain1

dLμ

dη
= 1

2
τ ε0μαβ

∫
d2 �R (T 0αRβ − T 0βRα ). (27)

We note that, although the right side of Eq. (27) is indepen-
dent of rapidity, our calculation is only meaningful close to
midrapidity where boost invariance is a good approximation.

The integral over the transverse plane in Eq. (27) can be
simplified using symmetry considerations. The source charge
distributions that we use (see Sec. II B) are even under the
transformation Ry → −Ry. We will consider symmetric dis-
placements of the ions relative to the collision axis (�b1 = −�b2)
so that the transformation Rx → −Rx interchanges the distri-
butions for the first and second ions. Using these symmetries
one can show that each component of the energy momentum
tensor in Milne coordinates is either even or odd under the Rx

and Ry parity transformations. We summarize these symme-
tries in Table I. Using the symmetry relation in Table I it is
easy to see that the only non-zero component of the angular
momentum per unit rapidity is

dLy

dη
= −τ 2

∫
d2 �R RxT 01. (28)

1We comment that our result is different from that of Ref. [8],
where a slightly inconsistent procedure is used. In that paper the
authors define angular momentum in Minkowski space, on a surface
of constant time, and then enforce separately that the integral should
be calculated with τ held fixed.
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TABLE I. Symmetries of the components of the energy-
momentum tensor under the transformations Rx → −Rx and Ry →
−Ry.

Rx → −Rx Ry → −Ry

T 00 even even
T 01 odd even
T 02 odd even
T 03 even odd
T 11 even even
T 12 even even
T 13 odd odd
T 22 even even
T 23 odd odd
T 33 even even

IV. NUMERICAL RESULTS

A. Notation and units

We remind the reader of the geometry of the collision we
are considering. The two ions approach each other along the
z axis and collide at the origin, at time t = 0. Post collision,
the first ion moves outward along the positive z axis and the
second ion moves along the negative z axis. We will consider
collisions with nonzero impact parameter, which we denote
b. The displacement vector for the first ion is �b1 = (b/2, 0)
and for the second ion we use �b2 = (−b/2, 0). Energy and
pressure are given in GeV and lengths in fm (we use natural
units c = h̄ = 1). We define a dimensionless time variable
τ̃ = τQs. We use Nc = 3, m = 0.2 GeV, Qs = 2 GeV, and
g = 1, unless stated otherwise. We consider lead-lead colli-
sions, which corresponds to mass numbers A1 = A2 = 207,
except for a few situations where we will explicitly specify
different mass numbers. We will show below that our results
to order τ 6 are valid to τ ≈ 0.05 fm, which corresponds to
τ̃ ≈ 0.51.

B. Physical observables and the gradient expansion

The form of the charge density function μ(�x⊥) that we use
is discussed in Sec. II B. We use r0 = 1.25 fm and a = 0.5 fm
so that the radius of a nucleus with A = 207 is RA = r0A1/3 =
7.4 fm. As explained in Sec. II B, we allow for nonhomo-
geneous nuclear density functions by performing a gradient
expansion around the coordinate that gives the position of the
center of each nucleus in the transverse plane. In Fig. 1 we
show the density function with �x⊥ = (Rx, 0), its first and sec-
ond derivatives with respect to Rx, and the quantity δ in Eq. (9)
which must be small for the gradient expansion to converge.
The condition δ < 0.75 is satisfied in the region to the left of
the vertical line in the figure. Figure 1 shows clearly that the
derivatives of the density function are appreciable only in a
very small region at the edges of the nucleus. This means that
if we calculate a quantity for which the dominant part of the
integrand is not close to the edges of the nuclei, the gradient
expansion will converge well, but the contributions of the
derivative terms will likely be so small that they are negligible.
On the other hand, if we calculate a quantity for which the

FIG. 1. The red (solid), green (dashed), and blue (dot-dashed)
curves show the density function and its first and second derivatives.
The quantity δ in Eq. (9) is shown by the black dots. For illustration
the figure shows a vertical line that indicates the value of Rx for which
δ = 0.75.

region of the transverse plane close to the edges of the nuclei
is important, the contribution from the derivative terms can be
large, but the convergence of the gradient expansion must be
studied carefully.

In Sec. IV C we look at the energy density of the glasma.
We restrict to the region of the transverse plane for which
−5 fm < | �R| < 5 fm. The corresponding condition on the
expansion parameter is δ � 0.2, and the gradient expansion
converges well. Within this region, the inhomogeneity of the
energy density in the transverse plane is almost entirely due
to the asymmetry created by a nonzero impact parameter,
which produces an almond shaped region of overlap. The
gradients of the individual charge distributions are small and
mostly irrelevant. In Sec. IV D we calculate the pressure of the
glasma. To illustrate the issues associated with the gradient
expansion we look at two different quantities, one of which
describes the asymmetry between the transverse and longi-
tudinal pressures, and the other characterizes the difference
between the two components of the transverse pressure. We
show that the former is almost completely insensitive to the
gradient expansion, whereas the latter depends strongly on the
behavior of the nuclear density function μ(�x⊥) close to the
nuclear radii. In Sec. IV E we look at various projections of
the Poynting vector which describes the flow of the energy of
the gluon field. The leading-order contribution to the Poynting
vector comes solely from the first-order term in the gradient
expansion, which means that we can restrict to the region
where the expansion parameter δ is small, and still see clearly
the contribution of the gradient terms. In Sec. IV F we study
the momentum anisotropy of the glasma by calculating the
Fourier coefficients of the azimuthal distribution of the flow,
and in Sec. IV G we look at the spatial azimuthal asymmetry
of the glasma by calculating the eccentricity. These calcula-
tions involve integration over the transverse plane, and are
therefore potentially sensitive to the gradient expansion. One
must show that results are largely insensitive to the choice
of the integration limits, and we will find that this condition
restricts us to the consideration of small impact parameters.
This is because when the centers of the two ions are separated,
the inner edge of the first (second) ion, where the density
changes rapidly, will be closer to the center of the second
(first) ion, where integrand can be large. In Sec. IV H we
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TABLE II. Configurations of colliding ions.

A B C D

A1 207 207 207 207
A2 207 207 40 40
b1/2 0 3 3 0
b2/2 0 −3 −3 0
Emax

0 GeV/fm3 2080 1715 722 1202

look at the angular momentum of the glasma. In this case
the gradient expansion severely limits the accuracy of the
calculation, but we are able to see that the angular momentum
carried by the glasma is many orders of magnitude smaller
than the total angular momentum of the participant nucleons
of the colliding nuclei [21,22].

C. Energy density

We look at the initial energy density E = T 00
mink at mid-

spatial-rapidity (η = 0) for four different configurations of the
colliding ions which are defined in Table II. The last row of the
table shows the maximum initial energy density. In Fig. 2 we
show, for case B, the initial energy density, and the difference
between the energy density at τ̃ = 0.42 and the initial energy
density. The energy density drops fastest at the center and
more slowly at the edges of the almond shaped interaction
region.

D. Pressures

1. Transverse and longitudinal pressures

We define the normalized longitudinal and transverse pres-
sures as

pL

E = T 11
mink

T 00
mink

and
pT

E = 1

2

(
T 22

mink + T 33
mink

)
T 00

mink

. (29)

For a system in equilibrium pT /E = pL/E = 1/3. The glasma
energy-momentum tensor at τ = 0+ has the diagonal form

(with both indices raised)

T initial
mink =

⎛
⎜⎝
E0 0 0 0
0 −E0 0 0
0 0 E0 0
0 0 0 E0

⎞
⎟⎠. (30)

We remind the reader that in our notation the components of
a position 4-vector in Minkowski coordinates are (t, z, x, y).
Equation (30) shows that the initial longitudinal pressure is
large and negative. The initial system is therefore not only far
from equilibrium, but also far from the regime where a quasi-
particle picture would be valid. As τ increases the longitudinal
pressure grows and, because the energy-momentum tensor is
traceless, the transverse pressure decreases.

In Fig. 3 we show the vector (pL/E , pT /E ) in the transverse
plane with b = η = 0. In the left panel we see −pL = pT

at τ = 0. In the next two panels we use the biggest value
of τ for which we trust the τ expansion at that order (these
times are determined from additional results in this and the
following sections; see for example Figs. 4 and 10). In the
middle figure we include terms to order τ 4 and set τ = 0.04
fm. The figure shows that the vector has straightened slightly
across the transverse plane. In the right figure we include all
terms to order τ 6 and use τ = 0.052 fm. We see that the vector
has straightened even more, but not uniformly.

The authors of Ref. [23] suggested that the anisotropy of
the transverse and longitudinal pressures should be character-
ized using the quantity

AT L ≡ 3(pT − pL )

2pT + pL
, (31)

which takes the value AT L = 6 at τ = 0 [using Eq. (30)] and
would be zero in an equilibrated isotropic plasma. We expect
that AT L should decrease as τ increases, up until the point at
which the proper time expansion breaks down. This behavior
is observed in Fig., 4 which shows AT L versus τ̃ at three
different orders in the τ expansion. The three curves are very
close to each other up to about τ̃ = 0.2, and the fourth- and
sixth-order expansions agree well up to about τ̃ = 0.4. In
Sec. IV E we show additional evidence that the sixth-order
expansion can be trusted to about τ̃ = 0.5. We note that for the
simpler case of nuclei that are uniform in the transverse plane
resummations of selected sets of terms have been used to

FIG. 2. Energy densities in the transverse plane for case B. The left panel shows the energy density at τ̃ = 0 and the right panel shows the
difference between the energy densitiy at τ̃ = 0.42 and the initial energy density. The units are GeV/fm3 and the axes show Rx and Ry in fm.
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FIG. 3. The vector (pL/E , pT /E) with b = η = 0 at τ = 0 (left), τ = 0.04 fm to order τ 4 (middle), and τ = 0.052 fm to order τ 6 (right).
The axes show Rx and Ry in fm.

increase the range of convergence of the energy and pressure
[3,5,24].

We also study how the behavior of AT L depends on
azimuthal angle (denoted φ), spatial rapidity, and impact pa-
rameter. As expected, AT L moves towards the equilibrium
value more quickly when the impact parameter is smaller, and
the region where the two ions overlap is greater. In Fig. 5
we show the quantity AT L at sixth order in the proper time
expansion as a function of τ̃ , for different values of η and φ.
We consider φ = 0, which corresponds to �R in the reaction
plane, and φ = π/2, where �R is perpendicular to the reaction
plane. The graph shows that AT L drops more quickly when
either the azimuthal angle or the spatial rapidity increases.

In Fig. 6 we show contour plots of AT L in the transverse
plane for η = 0, b = 0, and τ = 0.045 fm at order τ 4 and τ 6.
One sees that when the order τ 6 terms are included, the region
of the transverse plane where AT L is small is significantly
broader.

In Fig. 7 we show contour plots of AT L in the transverse
plane for η = 0, b = 0 at order τ 6 for three different times.
One sees that the value of AT L shrinks across the transverse
plane as τ increases.

We can also use the quantity AT L to demonstrate that our
results are not strongly dependent on the UV and IR scales
that enter the calculation (Qs and m in our notation). This
is important because the exact values of these scales are not

FIG. 4. The quantity AT L at R = 5 fm and η = 0 for three differ-
ent orders in the τ expansion.

known, and also because the way that these scales enter the
calculation depends on the method chosen to perform the
regularization. In all calculations in this paper we have used
Qs = 2.0 GeV and m = 0.2 GeV. In Fig. 8 we show AT L

at order τ 6 as a function of time for three different values
of Qs with m = 0.2 GeV (left panel) and for three different
values of m with Qs = 2.0 GeV (right panel). The graphs
show that, within the range of validity of the τ expansion, the
dependence on the value of these scales is weak.

2. Transverse pressure anisotropy

In this section we look at a quantity that can be used to
characterize the asymmetry of the transverse pressure. We
define [25]

{Axy} ≡ 〈T yy − T xx〉
〈T xx + T yy〉 , (32)

where the angular brackets indicate integration over the trans-
verse plane. For comparison we will also calculate

{AT L} ≡ 3〈pT − pL〉
〈2pT + pL〉 . (33)

The leading-order contribution to {Axy} comes from the
first-order term in the gradient expansion, and therefore this
quantity, in contrast to {AT L}, will be sensitive to the region
of the transverse plane that is close to the edges of the nuclei.

FIG. 5. The quantity AT L defined in Eq. (31) at R = 5 fm and
b = 6 fm.
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FIG. 6. The quantity AT L in Eq. (31) with b = 0 and η = 0 at τ = 0.045 fm at order τ 4 (left panel) and τ 6 (right panel). The axes show Rx

and Ry in fm.

FIG. 7. The quantity AT L in Eq. (31) with b = 0 and η = 0 at order τ 6 for τ = 0.04 fm (left panel), τ = 0.045 fm (center panel), and
τ = 0.05 fm (right panel). The axes show Rx and Ry in fm.

FIG. 8. The quantity AT L with R = 5 fm, b = 0, and η = 0 at order τ 6 for three different values of the saturation scale (left panel) and mass
parameter (right panel).
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FIG. 9. The quantities {AT L} and 7 × 105 × {Axy} at τ = 0.04 fm and η = 0 as functions of Rmax.

FIG. 10. The radial flow at η = 0, b = 6 fm, and R = 3 fm. The left panel shows different orders in the proper time expansion at φ = π/2,
and the right panel shows two different values of the azimuthal angle at order τ 5.

FIG. 11. The Poynting vector in the transverse plane with b = 6 fm and τ = 0.05 fm for η = −1.0 (left), η = 0 (center), and η = 1.0
(right).
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FIG. 12. The components of the Poynting vector at τ = 0.05 fm with Ry = 0 and A1 = 207 for b = 6 fm and A2 = 207 (left panel) and for
b = 0 and A2 = 40 (right panel). The axes show Rx in fm and η.

FIG. 13. The vector field (T z0, 10 T x0) with b = 6 fm and Ry = 0. The times are τ̃ = 0.1 (top left), τ̃ = 0.4 (top right), τ̃ = 0.6 (bottom
left), and τ̃ = 0.8 (bottom right). At early times the motion is predominantly longitudinal, and transverse velocity components develop at later
times. The last figure is beyond the time at which we trust the near field expansion.
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FIG. 14. The Fourier coefficients v1, v2, and v3 with η = 0.5 and
τ = 0.04 fm as functions of impact parameter. The procedure for
calculating the error bars is explained in the text.

We must verify that the integral is largely independent of
the upper limit that is used to perform the two-dimensional
integration over the transverse plane, which we call Rmax. In
Fig. 9 we show {Axy} at τ = 0.04 fm for two different values
of impact parameter, as a function of Rmax. The two vertical
lines in the figure represent the values of Rmax, for each value
of b, for which the parameter δ in Eq. (9) is less than 0.6 for
both nuclei. One sees that the result for {Axy} grows as Rmax

increases, up to approximately the value of Rmax at which the
gradient expansion breaks down. Smaller impact parameters
give results that can be trusted up to larger values of Rmax, as
explained in Sec. IV B. On the same graph we show the result
for {AT L} at τ = 0.04 fm and η = 0. The change with impact
parameter is too small to be seen on the graph, and the result
is almost six orders of magnitude larger than {Axy} and nearly
completely independent of Rmax. Figure 9 clearly illustrates
the problem discussed in Sec. IV B. The nature of the gradient

expansion makes it difficult to calculate any quantity that
gets important contributions from the region of the transverse
plane that corresponds to the edges of the nuclei. We will
return to this point in Secs. IV F–IV H.

E. Radial flow

To describe the radial flow of the expanding glasma in
the transverse plane, we look at the radial projection of the
transverse Poynting vector P ≡ R̂iT i0. In the left panel of
Fig. 10 we show this quantity at η = 0, b = 6 fm, R = 5
fm, and φ = π/2 at different orders in the τ expansion. At
lowest order P increases linearly with time. Including higher
order contributions we see that P increases more slowly with
time as the system expands. If we keep only terms at order
τ 3, it appears that P actually starts to decrease when τ̃ �
0.4; however, the near field expansion is not valid for these
times when only terms up to cubic order are included. The
result at order τ 5 shows a less pronounced flattening up to
about τ̃ = 0.5, which again indicates the limit of validity of
the near field expansion. In the right panel of Fig. 10 we
show P at η = 0, b = 6 fm, and R = 5 fm for φ = 0, which
corresponds to �R in the reaction plane, and φ = π/2, where
�R is perpendicular to the reaction plane. One sees that the
flattening is more pronounced when the azimuthal angle is
smaller.

Figures 11–13 show the Poynting vector in arbitrary units
in the transverse plane for b = 6 fm and τ = 0.05 fm. The
three panels in Fig. 11 correspond to three different values
of fixed rapidity. One sees that for positive (negative) val-
ues of rapidity, the center of the collision moves towards
the ion moving in the positive (negative) z direction which
has been displaced in the positive (negative) x-direction.
The positions where the magnitude of the Poynting vector
is zero for the three cases shown are (Rx, Ry) = (0,−0.91)
fm for η = −1.0, (0,0) for η = 0, and (0,0.91) fm for
η = 1.0.

In Fig. 12 we show the Poynting vector at Ry = 0 in the
(η, Rx) plane, in arbitrary units. In the first panel we see that
when η is positive, which corresponds to a position closer to
the right moving ion that has been displaced in the positive
x direction, the sign of the Poynting vector is predominantly
negative. This corresponds to the negative value of the di-
rected flow coefficient discussed in Sec. IV F. The second
panel shows that the system expands more strongly in the
wake of the larger nucleus.

In Fig. 13 we show the vector field (T z0, 10 T x0) with b =
6 fm and Ry = 0, in arbitrary units. One sees the transverse
velocity components develop up until the time at which the τ

expansion breaks down.

F. Fourier coefficients of the azimuthal distribution

In this section we calculate Fourier coefficients of the
azimuthal distribution of the flow vector T i0(�x⊥). The flow
vectors are used as input in hydrodynamic codes, and the
Fourier coefficients are related to experimental observables. In
Appendix C we define the form of the azimuthal distribution
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FIG. 15. The Fourier coefficients v1, v2, and v3 at τ = 0.04 fm. The left panel is for fixed b = 2 fm and the right panel is fixed η = 0.1.

FIG. 16. The Fourier coefficients v1, v2, and v3 at η = 0.1 and
b = 2 fm as functions of time. The blue dots show the result at order
τ 3 and the red squares represent the order τ 5 results.

that we use and explain how the Fourier coefficients vn are
calculated.

We note that among the important sources of uncertainty in
experimentally determined values of Fourier coefficients are
fluctuations in the positions of the nucleons that directly par-
ticipate in the primary interaction, which produce deviations
between the orientation of the event plane, determined by the
principal axes of the participants, and the reaction plane. In
our calculation the reaction plane is known, and fluctuations
are not included. One consequence is that the Fourier co-
efficients in our calculation exhibit specific symmetries: the
coefficients vn with n odd are rapidity odd, and those with n
even are rapidity even.

To estimate the error in the Fourier coefficients, we perform
the integrals using, for each value of b, a set of 15 evenly
spaced values of Rmax between 4.5 and 7.0 fm. We average
the results and calculate the error bar from the standard devi-
ation. In Fig. 14 we show the first three Fourier coefficients at
η = 0.5 and τ = 0.04 fm. As in Sec. IV D 2, we find that the
calculation is reasonably insensitive to the upper limit of the
integration for impact parameters b � 2.5 fm.

In Fig. 15 we look at the first three Fourier coefficients as
functions of rapidity and impact parameter, at τ = 0.04 fm.
We use Rmax = 5.9 fm in all calculations. In the left panel of
figure 15 we show v1, v2, and v3 at τ = 0.04 fm with b = 2
fm as a function of rapidity. In the right panel we show the
same three Fourier coefficients at τ = 0.04 fm and η = 0.1 as
functions of impact parameter. The directed flow coefficient,
v1, is negative (for η > 0), and the elliptic flow coefficient,
v2, is positive. The triangle coefficient v3 is small and positive
(for η > 0) when b � 2 fm. In Fig. 16 we show v1, v2, and
v3 as functions of time with η = 0.1 and b = 2 fm, at order
τ 3 and order τ 5. In all cases the curves agree well at small
times. The order τ 3 curves bend sharply upward at τ ≈ 0.03
fm, which shows the breakdown of the τ expansion at third
order. At larger values of τ , the order τ 5 results show the op-
posite behavior, bending rapidly downward. Similar behavior
is seen in Fig. 4 and is discussed in Sec. IV D 1. We determine
numerically that the position of the peak for each of the three
curves that show order τ 5 results is τ ≈ 0.05 fm, which is
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FIG. 17. The eccentricity ε2 as a function of impact parameter.

approximately the time at which the expansion breaks down.
The time for which the second derivative is zero, which
corresponds to the point where the curves start to flatten, is
approximately τ ≈ 0.03 fm for all three curves. This flatten-
ing of all three curves inside the region where the τ expansion
converges provides some evidence that the Fourier coeffi-
cients will not change rapidly immediately outside the region
of validity of the near field expansion. We also comment that
the radial flow shows similar behavior (see Fig. 10).

Our results for the second and third Fourier coefficients are
of the same order as experimental values [26,27], although our
result for |v1| is much bigger than expected [28]. However,
it is usually assumed that anisotropy develops mostly during
the hydrodynamic evolution that follows the glasma phase,
and in this context our results are surprisingly large for all
three Fourier coefficients. Azimuthal correlations in glasma
have been investigated by several other groups, using different
approaches and looking at different regimes, which makes
comparison difficult. In Ref. [25] the authors use a differ-
ent method and consider impact parameters that are larger
than the maximum value for which the gradient expansion
can be trusted, and times that are beyond the validity of the
near field expansion, but still obtain smaller values of v2. In
Refs. [29,30] the origins of azimuthal correlations in the CGC
approach are studied, but quantitative results for a glasma
system are not obtained.

FIG. 19. The eccentricity ε2, the elliptic flow coefficient v2, and
their ratio at τ = 0.04 fm and η = 0 with all curves normalized so
that the value at b = 0.5 fm is set to 1.

G. Eccentricity

Spatial deviations from azimuthal symmetry can be char-
acterized with the quantity [31,32]

εn = −
∫

d2 �R| �R| cos(nφ)E ( �R)∫
d2 �R| �R|E ( �R)

with φ = tan−1(Ry/Rx ),

(34)

where E ( �R) denotes the energy density.2 In Fig. 17 we show
the eccentricity, ε2, as a function of impact parameter at
τ = 0.04 fm and η = 0. The error bars are calculated from
the standard deviation of the results obtained using 15 values
of Rmax that are evenly spaced between 4.5 and 7.0 fm. The
results show that ε2 is largely insensitive to Rmax for impact
parameters b � 2.5 fm. In Fig. 18 we show v2, ε2, and v2/ε2

at τ = 0.04 fm and η = 0 using Rmax = 5.9 fm. In Fig. 19 we
show the same curves normalized so that the value at b = 0.5
fm is set to 1. The results show a clear correlation between the
spatial asymmetry introduced by the initial geometry, and the
anisotropy of the azimuthal distribution of the gluon momen-
tum. Correlations of this kind are considered characteristic of
the onset of hydrodynamic behavior.

2The sign in Eq. (34) is chosen to agree with Eq. (44) of Ref. [33].

FIG. 18. The left panel shows the elliptic flow coefficient v2 and the eccentricity ε2, and the right panel shows their ratio. All results are at
τ = 0.04 fm and η = 0.
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FIG. 20. The angular momentum per unit rapidity as a function of impact parameter. The right panel shows the same three curves as in the
left panel but with error bars included, and the values of impact parameter are shifted 0.05 fm left for the τ = 0.02 fm curve, and 0.05 fm right
for the τ = 0.04 fm curve, so that the error bars are separated enough to be seen individually.

H. Angular momentum

The angular momentum of the glasma can be calculated
from Eq. (28). In the left panel of Fig. 20 we show our results
at three different times, using Rmax = 5.9 fm. The error bars
in the right panel are obtained by calculating the standard
deviation of the results using a set of evenly spaced values for
Rmax between 4.5 and 7.0 fm. The error bars that are produced
by this procedure are large, even for small impact parameters
(for comparison see Figs. 14 and 17). This happens because
the problem discussed in Sec. IV B is much more serious in
the calculation of angular momentum than it was in Secs. IV F
and IV G. The dominant contribution to the angular momen-
tum comes from the parts of the nuclei that are farthest from
the collision center, with respect to which angular momentum
is calculated, but these are the regions where the gradient
expansion is least to be trusted. The angular momentum is
negative, which is expected when the ions moving in the
positive (negative) z directions are displaced in the positive
(negative) x directions. We note that in spite of the size of
the error bars in Fig. 20, the general shape of the curves is
consistently reproduced when the value of Rmax is changed.
Furthermore, this shape matches the basic form of the results
in Refs. [21,22]. It is especially interesting that in all three
calculations, the peak occurs at ≈2.0–2.5 fm, which is within
the range of impact parameters where the gradient expansion

FIG. 21. The angular momentum per unit rapidity as a function
of proper time with b = 2 fm using Rmax = 5.9 fm.

that we use can be trusted. However, it is important to note
that the values for angular momentum obtained in [21,22] are
≈105 at RHIC energies, and even larger at LHC energies, and
are thus five to six orders of magnitude larger than our results.

In Fig. 21 we show the angular momentum as a function of
proper time, at fixed impact parameter b = 2 fm at different
orders in the τ expansion. We have used the value Rmax =
5.9 fm in all cases. The figure shows that the τ expansion
appears to converge for much larger times than the other quan-
tities we have calculated. The authors of Ref. [8] observed
that the near field expansion method can produce very large
values of angular momentum, if one considers large enough
times. We have verified that our calculation reproduces this
behavior, but the sign of the angular momentum changes, and
the numerical value of the result depends strongly on the order
of the τ expansion. Both of these properties indicate that there
is no reason to believe the result is physical.

Our results indicate that the glasma carries only a very
small imprint of the primordial angular momentum, which
means that the majority of the angular momentum is carried
by valence quarks, for times at which the calculation is valid.
This result casts doubt on the idea of a rapidly rotating initial
glasma state that could be observed via polarization of final
state hadrons.

V. CONCLUSIONS

We have used a CGC approach and an expansion in proper
time to derive an analytic result for the glasma energy-
momentum tensor to sixth order in the proper time. We have
taken into account some aspects of nuclear structure using
spatially dependent nuclear density functions. In our previous
paper [3] we gave a detailed description of the steps involved
in our calculation. In this paper, we have concentrated on the
physical results that can be obtained from our final expression
for the energy-momentum tensor.

For most of the quantities that we calculated, the proper
time expansion can be trusted to about τ = 0.05 fm, and we
have shown that the glasma moves towards equilibrium until
the time at which the near field expansion breaks down. Us-
ing simple arguments based on the uncertainty principle [3],
one can argue that this upper bound of the region where the
near field expansion converges reaches far beyond the lower
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bound at which we no longer trust the classical description
that is inherent in our method. Our calculation also requires
an expansion in gradients of the nuclear density function.
Some of the quantities we have calculated are almost entirely
insensitive to this expansion, and in other cases the gradient
expansion restricts us to the consideration of small impact
parameters.

We have calculated the first three Fourier coefficients of the
azimuthal distribution of the momentum field of the glasma.
Our results are larger than is generally expected, which is
interesting because it contradicts the usual assumption that
azimuthal anisotropy is mostly generated during the hydro-
dynamic evolution of the plasma. We have also calculated
the eccentricity of the glasma, which describes the spatial
azimuthal asymmetry of the system. We have found a siz-
able correlation between the elliptic flow coefficient and
the eccentricity, which indicates that the spatial asymmetry
introduced by the initial geometry is effectively transmitted to
the azimuthal distribution of the gluon momentum field. This
result is interesting because a correlation of this kind is an
indication of the onset of hydrodynamics. We have formulated
a calculation of the angular momentum per unit rapidity, on a
hypersurface of constant proper time. Our results are much
smaller than the total angular momentum of the participating
nucleons [21,22,28], which shows that most of the angular
momentum carried by valence quarks is not transmitted to the
glasma. These results are significant because they contradict
the picture of a rapidly rotating initial glasma state that has
been proposed by several authors [9,10] and led to experimen-
tal searches for a polarization effect in the hyperons and vector
mesons produced in heavy ion collisions, which have been, so
far, largely unsuccessful [11,12].

Finally, we comment that all of the calculation done in this
paper make use of analytic solutions of the near field expanded
YM equation which we have obtained to order τ 6, and these
results are also useful in other contexts. We are currently

using these solutions to perform a calculation of the transport
properties of heavy quarks in glasma.
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APPENDIX A: NOTATION

The collision axis is defined to be the z axis and the two
transverse coordinates are denoted �x⊥. We use Minkowski,
light-cone, and Milne coordinates in different parts of the
calculation, and these coordinates are written (t, z, �x⊥),
(x+, x−, �x⊥), and (τ, η, �x⊥). We use the conventional defini-
tions

x+ = t + z√
2

and x− = t − z√
2

, (A1)

τ =
√

t2 − z2 =
√

2x+x− and η = 1

2
ln

(
x+

x−

)
. (A2)

We define the relative and average transverse coordinates

�r = �x⊥ − �y⊥ and �R = 1
2 (�y⊥ + �x⊥). (A3)

We will write unit vectors as r̂ = �r/|�r| = �r/r and R̂ =
�R/| �R| = �R/R and use standard notation for derivatives, for
example

∂ i
x = −∇ i

x = − ∂

∂xi
⊥

, (A4)

and similarly for y⊥, �r, and �R.
The metric tensors in these three coordinate systems are

gmink = (1,−1,−1,−1)diag and

glc
μν =

⎛
⎜⎜⎜⎜⎝

0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎠, gmilne

μν =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −τ 2 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎠. (A5)

The coordinate transformations are

xμ
mink = Mμ

ν xν
lc, Mμ

ν = dxμ
mink

dxν
lc

=

⎛
⎜⎜⎜⎜⎜⎝

1√
2

1√
2

0 0

1√
2

− 1√
2

0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠,

xμ
mink = Mμ

ν xν
milne, Mμ

ν = dxμ
mink

dxν
milne

=

⎛
⎜⎜⎜⎜⎝

cosh(η) τ sinh(η) 0 0

sinh(η) τ cosh(η) 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠. (A6)
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The generators ta of SU(Nc) satisfy

[ta, tb] = i fabctc,

Tr(tatb) = 1

2
δab,

fabc = −2iTr
(
ta[tb, tc]

)
. (A7)

Functions like Aμ, Jμ, ρ, and � are SU(Nc) valued functions and can be written as linear combinations of the SU(Nc) generators.
In the adjoint representation we write the generators with a tilde as (t̃a)bc = −i fabc.

APPENDIX B: COEFFICIENTS OF THE ENERGY-MOMENTUM TENSOR AT ORDER τ4

In this Appendix we give the coefficients X lm
n of Eq. (18) with n = 4. We remind the reader of the notation we are using.

We have defined L ≡ ln(Qs/m), μ̂1( �R) ≡ μ1( �R)/μ̄, μ̂2( �R) ≡ μ2( �R)/μ̄, μ̄ ≡ Q2
s /g4, and we use the shorthand notation μ̂10

1 ≡
∇xμ̂1( �R), μ̂11

1 ≡ ∇x∇yμ̂1( �R), etc. Our fourth-order results are

β10
4 = μ̂1Q8

s

65536π4g2

( − 9μ̂2
2(1 − 2L)4

(
5828μ̂10

1 − 3449μ̂10
2

) − 46800πμ̂2(1 − 2L)2μ̂10
1

+ [−31041μ̂2
1(1 − 2L)4 − 48240πμ̂1(1 − 2L)2 + 5120π2(L + 1)

]
μ̂10

2

) − (μ̂1 ↔ μ̂2),

γ 11
4 = − 27μ̂1Q8

s

32768π4g2m2

(
(2L − 1)

{
μ̂2

2(1 − 2L)2
(
287μ̂11

1 + 216μ̂11
2

)
+ μ̂1

[
175μ̂1(1 − 2L)2 + 144π

]
μ̂11

2 + 216πμ̂2μ̂
11
1

}) + (μ̂1 ↔ μ̂2),

δ02
4 = 3μ̂1Q8

s

65536π4g2m2

(
9μ̂2

2(2L − 1)3
(
2443μ̂02

1 + 2530μ̂02
2

) + 16080πμ̂2(2L − 1)μ̂02
1

+ [
9951μ̂2

1(2L − 1)3 + 8496πμ̂1(2L − 1) + 256π2
]
μ̂02

2

) + (μ̂1 ↔ μ̂2),

δ20
4 = 3μ̂1Q8

s

65536π4g2m2

(
9μ̂2

2(2L − 1)3
(
1869μ̂20

1 + 2098μ̂20
2

) + 12192πμ̂2(2L − 1)μ̂20
1

+ [
6801μ̂2

1(2L − 1)3 + 5904πμ̂1(2L − 1) + 256π2
]
μ̂20

2

) + (μ̂1 ↔ μ̂2),

E00
4 = 3μ̂1μ̂2Q8

s

65536π4g2

(
8376μ̂2

2(1 − 2L)4 + 3μ̂2
[
1797μ̂1(1 − 2L)2 + 3904π

]
(2L − 1)2 + 256π2(2L + 3)

) + (μ̂1 ↔ μ̂2),

E02
4 = μ̂1Q8

s

32768π4g2m2

(
9μ̂2

2(2L − 1)3
(
1078μ̂02

1 + 1157μ̂02
2

) + 7068πμ̂2(2L − 1)μ̂02
1

+ 4
(
[1047μ̂2

1(2L − 1)3 + 900πμ̂1(2L − 1) + 32π2
]
μ̂02

2

) + (μ̂1 ↔ μ̂2). (B1)

APPENDIX C: AZIMUTHAL DISTRIBUTION

In this section we define the azimuthal distribution of the flow vector T i0(�x⊥). The azimuthal angle is measured with respect
to the x axis and is written as

ϕ(�x⊥) = tan−1

(
T 0y(�x⊥)

T 0x(�x⊥)

)
= cos−1

(
T 0x(�x⊥)√

[T 0x(�x⊥)]2 + [T 0y(�x⊥)]2

)
. (C1)

We define the distribution

P(φ) ≡ 1

�

∫
d2�x⊥ δ(φ − ϕ(�x⊥))W (�x⊥), (C2)

where we have introduced the weighting function

W (�x⊥) ≡
√

[T 0x(�x⊥)]2 + [T 0y(�x⊥)]2 (C3)

and the normalization factor

� ≡
∫

d2�x⊥ W (�x⊥). (C4)
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The distribution P(φ) can be decomposed into Fourier harmonics as

P(φ) = 1

2π

(
1 + 2

∞∑
n=1

vn cos(nφ)

)
, (C5)

where coefficients vn are given by the relation

vn =
∫ 2π

0
dφ cos(nφ) P(φ). (C6)
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