14. An irradiation facility with a horizontal beam for radiobiological studies

J. Czub¹, D. Banaś^{1,2}, J. Braziewicz^{1,2}, <u>J. Choiński</u>³, M. Jaskóła⁴, A. Korman⁴, Z. Szefliński⁵, A. Łukaszek⁵, K. Kuchta⁵, A. Wójcik^{6,7}

¹ Institute of Physics, Świętokrzyska Academy, Kielce, Poland,

² Holycross Cancer Center, Kielce, Poland,

³ Heavy Ion Laboratory, Warsaw University, Poland,

⁵ Institute of Experimental Physics, Warsaw University, Poland,

⁶ Institute of Biology, Świętokrzyska Academy, Kielce, Poland,

A facility with a horizontal beam for radiobiological experiments with heavy ions has been designed and constructed at the Heavy Ion Laboratory in Warsaw University[1]. The facility is optimal to investigate the radiobiological effects of charged heavy particles on a cellular or molecular level as the plateau of the Bragg curve as well as in the Bragg peak. The passive beam spread out by a thin scattering foil provides a homogeneous irradiation field over an area of at least 1×1 cm². For in vitro irradiation of biological samples the passive beam spreading combined with the x-y mechanical scanning of the irradiated sample was found to be an optimum solution. Using x-y step motor, the homogenous beam of ions with the energy loss range in the cells varied from 1 MeV/µm to 200 keV/µm is able to cover a 6 cm in diameter Petri dish that holds the biological samples. Moreover on-line fluence monitoring based on single-particle counting is performed to determine the dose absorbed by cells. Data acquisition system for dosimetry and ion monitoring based on a personal computer was also designed.

References

[1] J. Czub, D. Banaś, J. Braziewicz, J. Choiński, M. Jaskóła, A. Korman, Z. Szefliński, A. Wójcik, Radiation Protection Dosimetry (2006), doi:10.1093/rpd/ncl518.

⁴ The Andrzej Soltan Institute for Nuclear Studies, Otwock-Świerk, Poland,

⁷ Institute of Nuclear Chemistry and Technology, Academy ,Warsaw, Poland