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Perturbation and variational-
perturbation method for the free
energy of anharmonic oscillators

K. Vlachos, V. Papatheou, and A. Okopińska

Abstract: The perturbation and the variational-perturbation methods are applied for
calculating the partition function of one-dimensional oscillators with anharmonicity x2n. New
formally simple expressions for the free energy and for the Rayleigh–Schrödinger energy
corrections are derived. It is shown that the variational-perturbation method overcomes all
the deficiencies of the conventional perturbation method. The results of fifth-order numerical
calculations for the free energy of the quartic, quartic–sextic, and octic anharmonic oscillator
are highly accurate in the whole range of temperatures.

PACS Nos.: 03.65.−w, 05.30.−d

Résumé : Nous utilisons la méthode perturbative et la méthode mixte perturbative-
variationnelle pour calculer la fonction de partition pour des oscillateurs harmoniques avec
un terme anharmonique en x2n. Nous obtenons de nouvelles expressions simples pour
l’énergie libre et pour les corrections en énergies de Rayleigh–Schrödinger. Nous montrons
que la méthode perturbative-variationnelle permet de surmonter les faiblesses de la méthode
perturbative traditionnelle. Les résultats de calculs numériques au 5e ordre pour l’énergie libre
des oscillateurs d’anharmonicité quartique, quartique-sextique et octique sont très précis sur
tout le domaine de température.

[Traduit par la Rédaction]

1. Introduction

The anharmonic potential proves to be very useful to model phenomena in nuclear physics, solid
state physics, molecular–atomic physics, and laser theory. Therefore, anharmonic systems have been
studied extensively both by analytical and numerical methods. These developments were triggered by
the demonstration that the Rayleigh–Schrödinger perturbation series for the simple system of the quartic
anharmonic oscillator diverges even for small values of the coupling constants [1]. Many techniques have
been developed for determining the energy spectra of various anharmonic oscillators. Highly accurate
approximations have been achieved by the use of the Hill determinant [2–6], the Bargmann represen-
tation [7, 8], the coupled cluster method [9–11], the variational (optimized) perturbation expansion
[12–15], and many others approaches [16–21].
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For an approximate description of the thermal equilibrium, the thermodynamic perturbation theory
based on the Schwinger trace formula [22] has been developed [23, 24]. The method has been applied
for computing the partition function of various anharmonic oscillators up to third order [25]. It has
been shown that the results obtained agree with the exact ones only in a limited range of temperatures,
which shrinks with increasing value of the anharmonic couplings. A much better description is obtained,
using the slightly modified perturbation theory with a variational frequency parameter introduced in
the unperturbed Hamiltonian [26–34]. In this paper, we pursue the study of the perturbation method up
to fifth order, presenting the formal formulas for the partition function of anharmonic oscillators with
arbitrary polynomial potentials. Using the quartic oscillator example, we discuss two ways of deriving
approximations to the free energy: from the partition function (PF) truncated at given order and from
the given order formula for the free energy (FE). The fifth-order results of both methods are shown to
be similar only for small values of the coupling in a narrow range of temperatures. We show how the
formulas for the partition function can be used to derive new formal forms of Rayleigh–Schrödinger
(RS) corrections to bound-state energies. Later, we consider the third method of approximating the free
energy, based on calculating the partition function as a sum of Boltzmann factors with RS eigenvalues.
We show that deficiencies of the perturbation method for the quartic oscillator persist in all of the three
formulations: the differences between the results of the PF, FE, and RS methods and the deviations
from the exact free energy increase with increasing order calculation. The difficulties are overcome by
the variational improvement of perturbation theory. We demonstrate that the variational-perturbation
results of the three methods (PF, FE, and RS) of approximating the free energy appear very similar in
the broad range of temperatures, the RS approximation being the most accurate. The approximations to
the energy eigenvalues become systematically improved in higher orders and the relative errors in the
fifth order are between 10−2 and 10−7, depending on the temperature and on the value of the coupling
constant.

The paper is organized as follows. In Sect. 2, we present the formal perturbation formulas for the
partition function of anharmonic oscillators. We discuss the PF and FE methods of approximating the
free energy on the quartic oscillator example. In Sect. 3, the formal forms of the RS corrections to
bound-state energies are derived and the RS approximations to the free energy are obtained. In Sect. 4,
the formulas of optimized perturbation theory are presented and calculations of the free energy up to
fifth order are performed for the quartic, quartic–sextic, and octic anharmonic oscillator.

2. Perturbation expansion of the free energy

Let us consider a one-dimensional system with a Hamiltonian given by

H = H0 + εV (x) (2.1)

where the unperturbed Hamiltonian is that of the harmonic oscillator with frequency ω

H0 = p2

2
+ ω2

2
x2 (2.2)

and the perturbation potential is given by a polynomial

V (x) =
∑
κ

dκxκ (2.3)

with constant coefficients dκ , and κ being even numbers. The parameter ε has been introduced to identify
the order of the perturbation and has to be set equal to one at the end.

The partition function of the system can be defined as the trace of density operator, that is

Z (β) = Tr {exp (−βH)} (2.4)
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where β is the inverse temperature.
In refs. 25 and 30, it has been shown that the thermodynamic perturbation theory can be formulated

in a way that greatly facilitates numerical calculation. The expansion of (2.4) in powers of ε has been
represented by a formally simple expression

Z (β) = Z0 (β)

[
1 − εβV {1} (Q) + ε2 β2

2
V {2} (Q) +

∞∑
ν=2

(−1)ν+1 εν+1 βν+1

ν + 1
V {ν+1} (Q)

]
(2.5)

where

Z0 (β) = Tr
{

e−βH0
}

= 1

2 sinh βω
2

(2.6)

is the partition function of the unperturbed system,

Qκ (β) = 1

Z0 (β)
Tr

(
xκe−βH0

)
= (κ − 1)!!

(
1

2ω
coth

βω

2

)κ/2

(2.7)

Qκ0κ1 (β) = 1

Z0 (β)

1∫
0

dt1Tr
(
xκ0 e−βH0 eβt1H0xκ1 e−βt1H0

)
(2.8)

and

Qκ0κ1···κν (β) = 1

Z0 (β)

1∫
0

tν−1
1 dt1

1∫
0

tν−2
2 dt2 · · ·

1∫
0

dtνTr


xκ0 e−βH0

ν∏
j=1

eβξj H0xκj e−βξj H0


 (2.9)

with

ξj = t1t2 · · · tj (2.10)

The expressions V {ν} (Q) are defined as follows:

V {ν} (Q) = V (Q) ∗ V (Q) ∗ · · · ∗ V (Q) (2.11)

where ∗ symbolizes an unconventional multiplication that obeys the following rules:

Qκ0κ1···κµ ∗ Qλ0λ1···λν = Qκ0κ1···κµλ0λ1···λν (2.12)

for example, the expression

Q24 ∗ Q68 = Q2468 (2.13)

represents the equation

1

Z0 (β)

1∫
0

dt1Tr
(
x2e−βH0 eβt1H0x4e−βt1H0

)
∗ 1

Z0 (β)

1∫
0

dt1Tr
(
x6e−βH0 eβt1H0x8e−βt1H0

)

= 1

Z0 (β)

1∫
0

t2
1 dt1

1∫
0

t2dt2

1∫
0

dt3

×
(
x2e−βH0 eβt1H0x4e−βt1H0 eβt1t2H0x6e−βt1t2H0 eβt1t3t3H0x8e−βt1t2t3H0

)
(2.14)
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The functions Qκ0κ1 (β) and Qκ0κ1κ2 (β) have been shown to be invariant under all permutations of κ0,
κ1, and κ2 [30]. Similarly, we can prove the invariance of Qκ0κ1···κν (β) functions under clockwise and
anticlockwise cyclic permutations of κ0, κ1, · · · , κν . The proof can be done along similar lines to that
described in Appendix B of ref. 30 with the use of the relation

Tr


xκ0 e−βH0

ν∏
j=1

eβξj H0xκj e−βξj H0


 =

+∞∫
−∞

dx0dx1 · · · dxνρ0(x0, x1; β (1 − ξ1))

ρ0 (x1, x2; β (ξ1 − ξ2)) · · · ρ0 (xν−1, xν; β (ξν−1 − ξν)) ρ0 (xν, x0; βξν) (2.15)

where ρ0 is the density matrix corresponding to the Hamiltonian H0. For analytical calculation of traces
we use the formulas

1

Z0 (β)
Tr


xκ0 e−βH0

n∏
j=1

eβξj H0xκj e−βξj H0




=
√

ω

π
tanh

βω

2

∑
κ0,··· ,κn

dκ0 · · · dκn

(
sinh (βωξ1)

ω

)κ1

· · ·
(

sinh (βωξ1)

ω

)κn

×
∞∫

−∞
xκ0 e−ω tanh βω

2 ·x2




κn∑
sn=0

(2κn)!asn
n

2snsn! (2κn − 2sn)!
(

Mx + anx1 + d

dx1

)2κn−2sn

N

× · · ·
κ1∑

s1=0

(2κ1)!as1
1

2s1s1! (2κ1 − 2s1)!
(

Mx + a1x1 + d

dx1

)2κ1−2s1

N
· 1




x1=x

dx (2.16)

where

M = ω

sinh (βω)
, ai = M

sinh (βω (1 − ξi))

sinh (βωξi)
(2.17)

and the symbol N denotes the normal ordering of operators. The products of the operators in (2.16) are
calculated by successive application of the formula given in ref. 35

(
Mx + a2x1 + d

dx1

)n2

N

(
Mx + a1x1 + d

dx1

)n1

N

=
[(

Mx + a2x1 + d

dx1

)n2

(Mx + a1x1)
n1

]
N

(2.18)

With the help of the above relations, the terms of the series for the partition function (2.5) can be
determined to the required order.

The free energy F (β) = 1/β ln Z (β) can be approximated in two ways. One way is to use the
finite order truncation, Z[i], of the series for the partition function (2.5), to calculate the ith order
approximation to the free energy via the form

F
[i]
PF (β) = − 1

β
ln Z[i](β) (2.19)

On the other hand, the perturbation formula can be obtained directly for the free energy, by expanding
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the logarithm with respect to ε, that is

FFE = − 1

β
ln

[
Tr

(
e−βH

)]

= − 1

β

{
ln Z0 (β) − εβV {1} (Q) + ε2 β2

2

[
−
[
V {1} (Q)

]2 + V {2} (Q)

]
+ · · ·

}
(2.20)

The finite-order truncation of the above formula F
[i]
FE is equivalent to the perturbation expression for the

free energy, which can be derived by diagrammatic techniques of field theory [27], but it proves more
efficient in the numerical evaluation of higher order terms.

As an example, we discuss here the perturbation expansion up to fifth order, for the quartic oscillator
with the anharmonic potential V (x) = λx4. In this case, the coefficients V {ν} (Q) are given by

V {1}(Q) = λQ4

V {2}(Q) = λ2Q44

V {3}(Q) = λ3Q444 (2.21)

V {4}(Q) = λ4Q4444

V {5}(Q) = λ5Q44444

with the expressions for the products of Q given in the Appendix.
In the numerical calculations, we take the harmonic frequency ω = 1 and discuss the dependence on

the parameter ω = 1 that measures the relative strength of anharmonicity. The fifth-order perturbation
approximations to the free energy, obtained with the use of both the PF definition (2.19) and FE
definition (2.20), are compared with the exact results in Fig. 1. The exact free energy has been calculated
numerically, using the energy eigenvalues determined by the optimized Rayleigh–Ritz method [36].
First, we observe that the FPF and FFE functions follow the exact free energy, only if the coupling
constant λ is quite small, and only in the range of mediocre temperatures. In the case when the coupling
constant is large, for example, λ = 0.3, the PF method cannot be applied, since the partition function
Z[5] (β) is always negative, and the free energy FPF cannot be defined. At smaller coupling constant,
for example, λ = 0.1, the partition function is positive only between the two roots (β1 = 2.5907
and β2 = 11.3214) and the approximation to the free energy FPF (β) is defined only in this range of
temperatures.At still smaller coupling constant, for example, λ = 0.01, there is only one root of Z[5] (β),
on the right of which FPF (β) is defined, but the deviations from the exact result increase for decreasing
temperature (β → ∞). The FE method performs better, since the function FFE (β) is well defined at
all temperatures, and proves to be closer to the exact free energy than FPF (β) in the whole range of
temperature. However, even at small values of λ, the function FFE (β) diverges at high temperatures
(β → 0), which reflects the asymptotic character of the perturbation expansion, in agreement with
the observation that the spectrum is dominated by the anharmonic part of the potential, as the system
approaches a classical behavior [37]. At intermediate and low temperatures, the FFE curve follows the
exact free energy, but the agreement spoils with increasing value of λ.

3. Rayleigh–Schrödinger energy corrections

It is interesting to observe, following the Fernández idea [37], that the formal expressions for
the partition function (2.5) can be conveniently utilized for determination of Rayleigh–Schrödinger
corrections to the energy eigenvalues of the system considered, by representing the eigenvalues En, as
a power series in a parameter ε

En = E[0]
n +

∞∑
ν=1

εν�νEn (3.1)
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Fig. 1. Inverse temperature (β) dependence of the fifth-order perturbative approximations to the free energy
of the quartic anharmonic oscillator, V (x) = λx4, in the case of λ = 0.1 and λ = 0.3. The approximations
obtained from the partition function expansion (FPF), from the free energy expansion (FFE) and from the
sum over states definition of the partition function (FRS), are compared with the exact free energy.
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where

E[0]
n = ω

(
n + 1

2

)
(3.2)

is the nth energy eigenvalue of the unperturbed system H0, and �νEn, ν = 1, 2, 3,…are the Rayleigh–
Schrödinger corrections, and expanding the partition function into a power series in ε

Z (β) =
∞∑

n=0

exp (−βEn) =
∞∑

n=0

exp

[
−β

(
E[0]

n +
∞∑

ν=1

εν�νEn

)]
(3.3)

we obtain [38]

Z (β) =
∞∑

n=0

∞∑
k=0

(−β)k

k!
∞∑

λ=0

cλε
λ (3.4)

where

c0 =
(
E[0]

n

)k

, cm = 1

mE
[0]
n

m∑
λ=1

(λk − m + λ) cm−λ�λEn for m ≥ 1 (3.5)

Because of the form of (3.1), the coefficients of ελ in (3.4) are the series of the linearly independent
functions

{
e−βωn, βe−βωn, β2e−βωn, · · ·} with n = 0, 1, 2,…. Equating the above coefficients with the

corresponding ones in (2.5) yields the following relations:

∞∑
n=0

e−βωn�1En = Qκ (β)

1 − e−βω
(3.6)

∞∑
n=0

e−βωn

[
−�2En + β

2
(�1En)

2
]

= β

2

Qκκ (β)

1 − e−βω
(3.7)

∞∑
n=0

e−βωn

[
�3En − β (�1En) (�2En) + β2

6
(�1En)

3
]

= β2

3

Qκκκ (β)

1 − e−βω
(3.8)
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Expanding the second term of these equations with respect to the linearly independent set
{
e−βωn

}
,

and comparing the coefficients of like powers of e−βω, the perturbation corrections for each energy
eigenvalue can be determined. With the above coefficients denoted as

Lκ1κ2···κν (ω, n) = Series Coefficient

[
βν−1

ν

Qκ1κ2···κν (β)

1 − e−βω
, e−βωn

]
(3.9)

the energy corrections, determined from the relations (2.7)–(2.9) and (3.6)–(3.8), can be represented by
formally simple expressions

�1En = V {1}(L), �2En = V {2}(L), · · · , �κEn = V {κ}(L) (3.10)

where the L-functions have the same properties as the Q-functions. The above expressions allow an
easy derivation of the perturbation corrections to the energy eigenvalues for an arbitrary anharmonic
potential of the polynomial form.

The first energy correction is easily determined from (2.7) for an arbitrary κ in an analytic form

�1En = λLκ(ω, n) = λ
(κ − 1)!!
2κ/2ωκ/2

k/2∑
i=0

(
κ
2 + n − i

)!
i! ( κ

2 − i
)! (n − i)! (3.11)

Next corrections can be determined using algebraic programming. In the case of the quartic anharmonic
oscillator (κ = 4) we have

�1En = λL4

�2En = −λ2L44

�3En = λ3L444 (3.12)

�4En = −λ4L4444

�5En = λ5L44444

with the L-coefficients presented in the Appendix.
The approximations to the free energy can be obtained via

F
[i]
RS(β) = − 1

β
ln Z

[i]
RS(β) (3.13)

where the partition function Z
[i]
RS(β) is calculated as a sum over the states (3.3) with the Rayleigh–

Schrödinger approximations to the energy eigenvalues, E[i]
n = E

[0]
n +

i∑
k=1

�kEn. The RS approximation

to the partition function Z
[i]
RS(β) is always positive, thereby the free energy (3.13) is defined for any

value of temperature. In Fig. 1, the F
[5]
RS (β) function is shown in comparison with F

[5]
PF (β), F

[5]
FE (β)

and the exact free energy. We observe that the FRS approximation performs better than FPF and FFE in
the whole range of λ and β. However, one has to admit that such a good agreement is obtained only
in odd orders of the perturbation method. In even orders, the RS energy eigenvalues become negative
at sufficiently large coupling constant, and the value, at which this happens, decreases with increasing
calculation order. Another symptom of the breakdown of perturbation theory is the fact that the three
perturbation expansions (2.19), (2.20), and (3.13), truncated at the same order, provide very different
results (FPF, FFE, and FRS). One has to stress that none of the methods is able to provide reliable
approximations to the free energy, even in the case of very small anharmonicity.
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4. Optimized perturbation theory

This is not too well-known that a powerful approximation method, called variational or optimized
perturbation theory, can be obtained by a simple modification of perturbation approach [12–15]. The
Hamiltonian of the system considered

H = p2

2
+ 1

2
x2 + ν(x) (4.1)

is modified by adding and subtracting the term ω2x2/2 and an unconventional splitting

H = H0(ω) + εV (x) (4.2)

where the unperturbed part has a form of the harmonic oscillator with an arbitrary frequency parameter
ω

H0(ω) = p2

2
+ ω2

2
x2 (4.3)

and the perturbation part is also ω-dependent

V (x) = 1 − ω2

2
x2 + ν(x) (4.4)

Approximations are obtained by truncating the series for the quantity of interest at a given order in ε, and
setting ε = 1. Since the modified perturbation term (4.4) has a polynomial form of (2.3), the formulas
for the partition function and the energy eigenvalues can be derived in the same way as discussed in
Sect. 3. For the quartic anharmonic oscillator, the successive coefficients V {ν}(Q) are obtained in the
form

V {1}(Q) = 1 − ω2

2
Q2 + λQ4 (4.5)

V {2}(Q) =
(

1 − ω2

2
Q2 + λQ4

){2}
=

(
1 − ω2

)2

4
Q22 + λ

(
1 − ω2

)
Q42 + λ2Q44 (4.6)

V {3}(Q) =
(

1 − ω2

2
Q2 + λQ4

){3}
=

(
1 − ω2

)3

8
Q222 + 3λ

(
1 − ω2

)2

4
Q422

+ 3λ2 1 − ω2

2
Q442 + λ3Q444 (4.7)

V {4}(Q) =
(

1 − ω2

2
Q2 + λQ4

){4}
=

(
1 − ω2

)4

16
Q2222 + 4λ

(
1 − ω2

)3

8
Q4222 + λ2

(
1 − ω2

)2

4

×
(

4Q4422 + 2Q4242
)

+ 4λ3 1 − ω2

2
Q4442 + λ4Q4444 (4.8)

V {5}(Q) =
(

1 − ω2

2
Q2 + λQ4

){5}
=

(
1 − ω2

)5

32
Q22222 + 5λ

(
1 − ω2

)4

16
Q42222

+ 5λ2

(
1 − ω2

)3

8

(
Q44222 + Q42422

)
+ 5λ3

(
1 − ω2

)2

4

(
Q44422 + Q44242

)

+ 5λ4 1 − ω2

2
Q44442 + λ5Q44444 (4.9)
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Fig. 2. Inverse temperature (β) dependence of the fifth-order variational-perturbative approximations to the
free energy of the quartic anharmonic oscillator, V (x) = λx4, in the case of λ = 0.1 and λ = 0.3. The
approximations obtained from the partition function expansion (FPF), from the free energy expansion (FFE)

and from the sum over states definition of the partition function (FRS), are compared with the exact free
energy.(Author, caption correct?)
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The formulae for �νEn are given by (4.5)–(4.9) with the Qk1k2···kν -functions replaced by the Lk1k2···kν -
coefficients, respectively. All the necessary products of Q and L are presented in the Appendix.

At any finite order, the approximate expressions depend on the arbitrary parameter ω, in contrast to
the exact result, which does not depend on this parameter. The freedom of choosing the value of ω is
used to advantage in formulating the variational-perturbation theory [12–15]. According to Stevenson’s
principle of minimal sensitivity (PMS) [39], the value of ω is chosen so that the approximate expression
is insensitive to small variations of this parameter, i.e., the dependence on ω is as flat as possible.
The variational-perturbation methodology has been successfully applied for calculating the energy
eigenvalues to high orders [12, 13]. The first-order expressions have been obtained for the partition
function [26]. The free energy, not very well described in the first order [28, 29], has been shown to
improve noticeably in the second and third order [27, 33]. Here, we extend the calculation of the free
energy to the fifth order, considering the three methods of deriving the approximate result, namely,
calculating FPF(β), FFE(β), and FRS(β), as they are defined in (2.19), (2.20), and (3.13), respectively.
One should note that the variational-perturbation expression for FFE(β) agrees with those derived with
diagrammatic techniques up to the third [27] and fourth order [34]. Approximations to FFE(β) are also
discussed in ref. 40, where the perturbation expansion of the imaginary-time evolution amplitude was
derived in a recursive way. The coefficients of the recursion formulas were used to obtain the variational-
perturbation results up to fifth order for the quartic oscillator; however, the explicit formulas for the free
energy were not obtained. In our approach, the formulas for FPF(β) and FFE(β) up to fifth order can
be easily derived with the use of (4.1)–(4.9). In each order calculation, the application of the minimal
sensitivity condition to the FPF(β) and FFE(β), determines the arbitrary frequency ω as a function of
the temperature. In the RS method, the optimized value of ω is temperature independent but fixed for
each energy level independently. The RS method seems to be more complicated, as the summation over
many optimized states has to be performed for determining the partition function, but the optimization
conditions are easier to analyze, because the polynomial equations can be solved with the Mathematica
command NSolve instead of FindRoot that is necessary in the PF and FE methods.

In Fig. 2, the fifth-order results of the above calculations are plotted in comparison with the exact free
energy of the quartic oscillator. A comparison with the results of the conventional perturbation theory
(Fig. 1) shows that the optimization procedure has significantly improved the accuracy in the whole
range of temperature, both for small and for large values of the parameter λ. Also the discrepancies
between the results of the PF, FE, and RS methods have been greatly diminished, which can be attributed
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Table 1. The five successive variational-perturbation approximations F [1], F [2], F [3], F [4], F [5], to the
free energy of quartic, quartic–sextic, and octic anharmonic oscillators, as calculated from the PF, FE,
and RS methods at various values of the coupling constant λ.

Quartic λ = 1 λ = 1000

β 0.01 0.1 1 10 0.01 0.1 1 10

F
[1]
PF −304.729 −12.8758 0.698309 0.832822 −132.833 5.55002 7.16351 7.21579

F
[1]
FE −306.817 −13.0631 0.677890 0.812500 −135.068 5.22948 6.82795 6.82795

F
[1]
RS −311.976 −13.4945 0.667282 0.812500 −140.159 5.05194 6.82795 6.82795

F
[2]
PF −308.577 −13.2303 0.668282 0.815787 −136.810 5.13230 6.96789 7.24651

F
[2]
FE −310.512 −13.3926 0.659344 0.804190 −138.887 4.94572 6.70400 6.70400

F
[2]
RS −311.280 −13.4629 0.657256 0.804190 −139.788 4.90215 6.70400 6.70400

F
[3]
PF −310.214 −13.3665 0.661660 0.811481 −138.554 4.99051 6.85562 7.07671

F
[3]
FE −311.182 −13.4470 0.657601 0.803914 −139.587 4.90722 6.69703 6.69703

F
[3]
RS −311.293 −13.4559 0.657106 0.803914 −139.694 4.89789 6.69703 6.69703

F
[4]
PF −310.819 −13.4189 0.658579 0.807329 −139.191 4.93534 6.79762 7.11167

F
[4]
FE −311.390 −13.4644 0.658579 0.803756 −139.805 4.89439 6.6939 6.69390

F
[4]
RS −311.292 −13.4565 0.657073 0.803756 −139.700 4.89744 6.69390 6.69390

F
[5]
PF −311.077 −13.4394 0.657793 0.806438 −139.469 4.91505 6.76247 7.00198

F
[5]
FE −311.415 −13.4663 0.656912 0.803762 −139.832 4.89329 6.69397 6.69397

F
[5]
RS −311.291 −13.4566 0.657097 0.803762 −139.702 4.89794 6.69397 6.69397

FEXACT −311.291 −13.4565 0.657105 0.803771 −139.699 4.89816 6.69422 6.69422

Quartic–sextic λ1 = 1, λ2 = 1 λ1 = 1, λ2 = 10

β 0.01 0.1 1 10 0.01 0.1 1 10

F
[1]
PF −258.013 −9.89832 0.936651 1.020520 −222.026 −6.50083 1.47954 1.54319

F
[1]
FE −261.724 −10.2345 0.891213 0.963747 −225.959 −6.89758 1.38494 1.40218

F
[1]
RS −273.506 −11.1321 0.876347 0.963747 −238.664 −7.86784 1.37753 1.40218

F
[2]
PF −260.880 −10.2130 0.891952 1.011910 −224.66 −6.79348 1.41563 1.57529

F
[2]
FE −267.141 −10.7299 0.855942 0.939982 −231.519 −7.42854 1.32818 1.34951

F
[2]
RS −272.051 −11.1332 0.848199 0.939982 −237.238 −7.95890 1.32186 1.34951

F
[3]
PF −266.544 −10.6640 0.868163 0.992276 −230.957 −7.35447 1.36782 1.51698

F
[3]
FE −270.416 −10.9765 0.848772 0.937867 −235.237 −7.74398 1.31639 1.34118

F
[3]
RS −272.049 −11.1062 0.845906 0.937867 −237.103 −7.93549 1.31339 1.34118

F
[4]
PF −267.536 −10.7603 0.859244 0.998444 −231.938 −7.45378 1.35382 1.57313

F
[4]
FE −271.680 −11.0766 0.844958 0.935953 −236.634 −7.86645 1.30961 1.33536

F
[4]
RS −272.097 −11.0945 0.844340 0.935953 −237.190 −7.90724 1.30763 1.33536

F
[5]
PF −269.459 −10.9055 0.853101 0.985871 −234.131 −7.64473 1.33779 1.52845

F
[5]
FE −272.215 −11.1111 0.844348 0.935844 −237.290 −7.91780 1.30810 1.33447

F
[5]
RS −272.065 −11.0971 0.844332 0.935844 −237.175 −7.90735 1.30668 1.33447

FEXACT −272.072 −11.0969 0.844240 0.935566 −237.169 −7.90511 1.30552 1.33295

F
[1]
PF −235.701 −8.9292 0.899074 0.997290 −169.417 −1.98262 2.61935 2.76327

F
[1]
FE −240.791 −9.4319 0.821229 0.889691 −174.581 −2.56974 2.32060 2.32124

F
[1]
RS −260.918 −11.0606 0.790936 0.889691 −194.214 −3.80197 2.31942 2.32124
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Table 1. (concluded).

Octic λ = 1 λ = 200

β 0.01 0.1 1 10 0.01 0.1 1 10

F
[2]
PF −229.774(3) −8.371(3) 0.889320 1.078530 −163.503(3) −1.69417 2.70361 3.09564

F
[2]
FE −243.318 −9.7176 0.780272 0.856656 −177.164 −2.92164 2.21277 2.21271

F
[2]
RS −258.751 −11.1909 0.745475 0.856656 −193.208 −4.15904 2.21004 2.21271

F
[3]
PF −244.417 −9.7702 0.816753 1.032820 −178.213 −2.88536 2.52759 2.95025

F
[3]
FE −251.942 −10.4792 0.745999 0.842822 −185.799 −3.62704 2.15405 2.15485

F
[3]
RS −258.433 −11.1960 0.729874 0.842822 −192.499 −4.25475 2.15203 2.15485

F
[4]
PF −243.160 −9.6745 0.826264 1.138220 −176.970 −2.81629 2.65263 3.39989

F
[4]
FE −253.227 −10.6084 0.739421 0.838340 −187.103 −3.76666 2.14085 2.14085

F
[4]
RS −258.733 −11.0811 0.723901 0.838340 −192.236 −4.19546 2.13785 2.14085

F
[5]
PF −248.620 −10.1685 0.792115 1.090350 −182.444 −3.29461 2.52499 3.24850

F
[5]
FE −256.227 −10.8695 0.728728 0.833459 −190.097 −3.99758 2.12001 2.12063

F
[5]
RS −258.733 −11.0935 0.718932 0.833459 −192.647 −4.23124 2.11767 2.12063

FEXACT −258.639 −11.0750 0.709342 0.820685 −192.481 −4.16669 2.07037 2.07309

to the fact that the optimization procedure improves the convergence properties of the approximation
scheme. One can see that the convergence of the above scheme for FFE(β) is much quicker that those
obtained in the variational expansion of Lu et al. [34], where ω(β) has been fixed so as to minimize the
first-order expression for the free energy, and used as an optimal frequency in higher order calculations.
In our scheme, the minimal sensitivity condition is applied to each order approximation for FFE(β),
and the optimal frequency ω(β) changes from order to order.

We performed a similar calculation for the quartic–sextic anharmonic potential

v(x) = λ1x
4 + λ2x

6 (4.10)

and for the octic potential

v(x) = λx8 (4.11)

Numerical results of the PF, FE, and RS methods for the free energy of the oscillators above are listed
in Table 1 at various temperatures. For determination of the optimal ω, the condition for vanishing
for the first derivative of the F -functions in odd-order approximations, and of the second derivative
in even-order approximations, except in a few cases, is indicated by (3) in Table 1, where the third
derivative has been used. One can observe how successive order approximations of the PF, FE, and RS
method approach the exact free energy. In all orders, the FE and RS methods give much better results
than those obtained using the PF method. The function FPF(β) shows a wrong asymptotic behavior for
small temperatures, namely, it diverges for β > β0, where β0 corresponds to the minimum of internal
energy, according to the criterion of decreasing internal energy [30]. At low temperatures (β → ∞),
the functions FFE(β) and FRS(β) have exactly the same form, approaching the variational-perturbation
approximation to the ground-state energy. At high temperatures (β → 0), the function FFE(β) diverges
to negative infinity for even-order approximations and to positive infinity for odd-order approximations,
the RS method proves to agree better with the exact free energy, which can be attributed to the fact
that optimization of the frequency parameter in this method is performed independently for individual
energy levels. This is particularly clearly visible for the octic anharmonic oscillator in Fig. 3.
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Fig. 3. The first five successive variational-perturbation approximations to the free energy of the octic
anharmonic oscillator, V (x) = λx8, compared with the exact free energy, in the case of λ = 1000.
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5. Conclusion

In this paper, we derive the perturbation expansion of the partition function for a general class of
oscillators with a polynomial anharmonic potential, providing a formally simple formula for an arbitrary
order term. Similar formulas have also been obtained for the optimized perturbation expansion with
a frequency variational parameter. The above expansions for the partition function have been used
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to obtain the formal formulas for energy levels and the free energy in perturbation and variational-
perturbation theory. We discussed the three methods of calculating the free energy: from the partition
function expansion (PF), from the free energy expansion (FE), and from the sum over states definition
of the partition function (RS).

Numerical results have been discussed up to fifth order of the perturbation and variational-perturbation
theory, in the case of quartic, quartic–sextic, and octic anharmonic oscillators. The divergent character
of perturbation theory shows up in calculating the free energy, since the PF, FE, and RS methods yield
very different results that deviate from the exact results, especially strongly at high temperatures. The
deficiencies of the perturbation theory are overcome in the variational-perturbation approach, which
provides highly accurate approximations to the free energy of the oscillators considered. The fifth-order
results of the FE and RS methods are similar to each other and agree well with the exact free energy
in the broad range of temperatures. The PF method is much worse and should be avoided, the choice
has to be made thus between the RS and FE methods. Although the results of the RS method are the
most accurate in the whole range of temperature, the FE method is more elegant, since summation over
states is avoided, and only one function of a compact form has to be analyzed to determine the optimal
frequency. The fact that the optimal frequencies change from order to order is crucial for convergence
of both approximation schemes.

The operator method of deriving the perturbation expansion elaborated in this paper can be very
useful in studying the extensions to multidimensional problems. The main advantage of the method is
that the perturbation formulas, for both the energy eigenvalues and the free energy, can be determined
to any order without necessity of summation over intermediary states, which circumvents possible
degeneracy complications. This makes the task of determining the accurate energy spectrum and the
study of thermal properties of multidimensional systems feasible within the variational-perturbation
theory. We shall discuss this issue in a separate publication.
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Appendix A.

The Q–functions that appear in (2.20) and (4.5)–(4.9) in terms of the variable y = e−βω have the
form

Q22 = 1

4 (1 − y)2 βω3

[
2
(

1 − y2
)

+
(

1 + 6y + y2
)

βω
]

(A1)

Q42 = 3 (1 + y)

8 (1 − y)3 βω4

[
4
(

1 − y2
)

+
(

1 + 10y + y2
)

βω
]

(A2)

Q44 = 3

16 (1 − y)4 βω5

[
4
(

1 − y2
) (

7 + 20y + 7y2
)

+ 3
(

1 + 20y + 54y2 + 20y3 + y4
)

βω
]

(A3)

Q222 = 1

16 (1 − y)3 β2ω5

[
12 (1 − y) (1 − y)2 + 6 (1 − y)

(
1 + 6y + y2

)
βω

+
(

1 + 23y + 23y2 + y3
)

β2ω2
]

(A4)

Q422 = 3

32 (1 − y)4 β2ω6

[
32

(
1 − y2

)2 + 10
(

1 − y2
) (

1 + 10y + y2
)

βω

+
(

1 + 40y + 110y2 + 40y3 + y4
)

β2ω2
]

(A5)

Q442 = 3

64 (1 − y)5 β2ω7

[
40 (1 − y)2

(
7 + 27y + 27y2 + 7y3

)
+ (1 − y)

(
13 + 250y + 594y2 + 250y3 + 13y4

)
βω

+ 3
(

1 + 69y + 410y2 + 410y3 + 69y4 + y5
)

β2ω2
]

(A6)
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Q444 = 27

128 (1 − y)6 β2ω8

[
8
(

1 − y2
)2 (

37 + 176y + 37y2
)

− 4
(

1 − y2
) (

7 + 226y + 894y2 + 226y4 + 7y4
)

βω

+
(

1 + 10y + y2
) (

1 + 108y + 262y2 + 108y3 + y4
)

β2ω2
]

(A7)

Q2222 = 1

96 (1 − y)4 β3ω7

[
120 (1 + y) (1 − y)3 + 60 (1 − y)2

(
1 + 6y + y2

)
βω

+ 12
(

1 − y2
) (

1 + 22y + y2
)

β2ω2

+
(

1 + 76y + 230y2 + 76y3 + y4
)

β3ω3
]

(A8)

Q4222 = 1

64 (1 − y)5 β3ω8

[
384 (1 − y)

(
1 − y2

)2 + 132 (1 − y)
(

1 − y2
) (

1 + 10y + y2
)

βω

+ 18 (1 − y)
(

1 + 40y + 110y2 + 40y3 + y4
)

β2ω2

+ (1 + y)
(

1 + 128y + 702y2 + 128y3 + y4
)

β3ω3
]

(A9)

Q4422 = 3

256 (1 − y)6 β3ω9

[(
1 − y2

) (
527 + 462y − 1642y2 + 462y3 + 527y4

)
+ 4

(
154 + 2507y + 581y2 − 7324y3 + 581y4 + 2507y5 + 154y6

)
βω

+ 2
(

1 − y2
) (

29 + 1912y + 8758y2 + 1912y3 + 29y4
)

β2ω2

+2
(

1 + 218y + 2671y2 + 5740y3 + 2671y4 + 218y5 + y6
)

β3ω3
]

(A10)

Q4242 = 3

128 (1 − y)6 β3ω9

[
5
(

1 − y2
) (

257 + 210y − 1270y2 + 210y3 + 257y4
)

+ 12
(

24 + 447y + 291y2 − 1244y3 + 291y4 + 447y5 + 24y6
)

βω

+ 24
(

1 − y2
) (

1 + 68y + 342y2 + 68y3 + y4
)

β2ω2

+
(

1 + 218y + 2671y2 + 5740y3 + 2671y4 + 218y5 + y6
)

β3ω3
]

(A11)

Q4442 = 9

256 (1 − y)7 β3ω10

[
128 (1 − y)

(
1 − y2

)2 (
37 + 176y + 37y2

)
+ 16 (1 − y)

(
1 − y2

) (
43 + 1314y + 4546y2 + 1314y3 + 43y4

)
βω

+ 8 (1 − y)
(

5 + 565y + 5863y2 + 12094y3 + 5863y4 + 565y5 + 5y6
)

β2ω2

+ (1 + y)
(

1 + 366y + 7647y2 + 24292y3 + 7647y4 + 366y5 + y6
)

β3ω3
]

(A12)
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Q4444 = 3λ4

512 (1 − y)8 β3ω11

[
80 (1 − y)

(
1 − y2

) (
2059 + 20286y + 40822y2 + 20286y3

+2059y4
)

+ 48 (1 − y)2
(

271 + 14178y + 109209y2 + 205164y3 + 109209y4

+14178y5 + 271y6
)

βω + 72
(

1 − y2
) (

7 + 1312y + 22529y2 + 66544y3

+ 22529y4 + 1312y5 + 7y6
)

β2ω2 + 9
(

1 + 616y + 22972y2 + 155992y3

+ 285958y4 + +155992y5 + 22972y6 + 616y7 + y8
)

β3ω3
]

(A13)

Q22222 = 1

768 (1 − y)5 β4ω9

[
1680 (1 − y)4 (1 + y) + 840 (1 − y)3

(
1 + 6y + y2

)
βω

+ 180 (1 − y)2 (1 + y)
(

1 + 22y + y2
)

β2ω2

+ 20 (1 − y)
(

1 + 76y + 230y2 + 76y3 + y4
)

β3ω3

+ (1 + y)
(

1 + 236y + 1446y2 + 236y3 + y4
)

β4ω4
]

(A14)

Q42222 = 1

512 (1 − y)6 β4ω10

[
6144 (1 − y)2

(
1 − y2

)2 + 2232 (1 − y)2
(

1 − y2
)

×
(

1 + 10y + y2
)

βω + 348 (1 − y)2
(

1 + 40y + 110y2 + 40y3 + y4
)

β2ω2

+ 28
(

1 − y2
) (

1 + 128y + 702y2 + 128y3 + y4
)

β3ω3

+
(

1 + 398y + 5311y2 + 11620y3 + 5311y4 + 398y5 + y6
)

β4ω4
]

(A15)

Q44222 = 1

1024 (1 − y)7 β4ω11

[
90 (1 − y)

(
1 − y2

) (
797 + 714y − 2014y2 + 714y3 + 797y4

)
+9 (1 − y)

(
2121 + 33508y + 5999y2 − 87736y3 + 5999y4 + 33508y5 + 2121y6

)
βω

+ 36 (1 + y)
(

62 + 3807y + 8899y2 − 27496y3 + 8899y4 + 3807y5 + 62y6
)

β2ω2

+ 16 (1 − y)
(

8 + 1699y + 19708y2 + 41650y3 + 19708y4 + 1699y5 + 8y6
)

β3ω3

+3 (1 + y)
(

1 + 666y + 15087y2 + 49132y3 + 15087y4 + 666y5 + y6
)

β4ω4
]

(A16)

Q42422 = 3

1024 (1 − y)7 β4ω11

[
90 (1 − y)

(
1 − y2

) (
257 + 210y − 1270y2 + 210y3 + 257y4

)
+ (1 − y)

(
5893 + 106964y + 50387y2 − 313048y3 + 50387y4 + 106964y5 + 5893y6

)
βω

+ 12 (1 + y)
(

52 + 3477y + 10539y2 − 26176y3 + 10539y4 + 3477y5 + 52y6
)

β2ω2

+ 36 (1 − y)
(

1 + 218y + 2671y2 + 5740y3 + 2671y4 + 218y5 + y6
)

β3ω3

+ (1 + y)
(

1 + 666y + 15087y2 + 49132y3 + 15087y4 + 666y5 + y6
)

β4ω4
]

(A17)
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Q44422 = 1

2048 (1 − y)8 β4ω12

[
10

(
1 − y2

)2 (
86827 + 238626y − 472154y2 + 238626y3

+ 86827y4
)

+ 15
(

1 − y2
) (

10777 + 278628y + 306303y2 − 1316856y3

+306303y4 + 278628y5 + 10777y6
)

βω + 108
(

124 + 12829y + 94991y2

+4291y3 − 255830y4 + 4291y5 + 94991y6 + 12829y7 + 124y8
)

β2ω2

+ 12
(

1 − y2
) (

43 + 15138y + 293141y2 + 90207y3 + 293141y4 + 15138y5

+43y6
)

β3ω3 + 9
(

1 + 1116y + 44836y2 + 311716y3 + 574902y4 + 311716y5

+44836y6 + 1116y7 + y8
)

β4ω4
]

(A18)

Q42442 = 1

2048 (1 − y)8 β4ω12

[
10

(
1 − y2

)2 (
83669 + 231390y − 808870y2 + 231390y3

+83669y4
)

+ 15
(

1 − y2
) (

9767 + 295068y + 491073y2 − 1466376y3

+491073y4 + 295068y5 + 9767y6
)

βω + 36
(

292 + 32697y + 278003y2

+75303y3 − 678510y4 + 75303y5 + 278003y6 + 32697y7 + 292y8
)

β2ω2

+ 24
(

1 − y2
) (

19 + 6804y + 136373y2 + 425928y3 + 136373y4 + 6804y5

+19y6
)

β3ω3 + 9
(

1 + 1116y + 44836y2 + 311716y3 + 574902y4 + 311716y5

+44836y6 + 1116y7 + y8
)

β4ω4
]

(A19)

Q44442 = 3

4096 (1 − y)9 β4ω13

[
1760

(
1 − y3

) (
1 − y2

) (
2059 + 20286y + 40822y2 + 20286y3

+ 2059y4
)

+ 80 (1 − y)3
(

5311 + 259820y + 1817153y2 + 3317480y3

+ 1817153y4 + 259820y5 + 5311y6
)

βω + 480 (1 − y)
(

1 − y2
) (

46 + 8121y

+126450y2 + 355950y3 + 126450y4 + 8121y5 + 46y6
)

β2ω2 + 72 (1 − y)

×
(

9 + 5294y + 182296y2 + 1197746y3 + 2175230y4 + 1197746y5

+ 182296y6 + 5294y7 + 9y8
)

β3ω3 + 9 (1 + y)
(

1 + 1864y + 122236y2

+ 1268344y3 + 3021190y4 + 1268344y5 + 122236y6 + 1864y7 + y8
)

β4ω4
]

(A20)
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Q44444 = 9

8192 (1 − y)10 β4ω14

[
480 (1 − y)2

(
1 − y2

)2 (
33953 + 483478y + 1299778y2

+483478y3 + 33953y4
)

+ 80 (1 − y)2
(

1 − y2
) (

13403 + 1033948y

+ 11090101y2 + 25920136y3 +11090101y4 + 1033948y5 + 13403y6
)

βω+
+ 480 (1 − y)2

(
80 + 23155y + 626726y2 + 3710541y3 + 6537876y4+

+3710541y5 + 626726y6 + 23155y7 + 80y8
)

β2ω2

+ 120
(

1 − y2
) (

7 + 6798y + 375152y2 + 3632658y3 + 8421330y4

+3632658y5 + 375152y6 + 6798y7 + 7y8
)

β3ω3

+ 9
(

1 + 3114y + 336973y2 + 5853112y3 + 28340146y4 + 47054908y5

+ 28340146y6 + 5853112y7 + 336973y8 + 3114y9 + y10
)

β4ω4
]

(A21)

The L coefficients that appear in (3.11) have the form

N0 = 1 + 2n (A22)

L2 = 1

2ω
N0, L22 = 1

2ω2 L2, L222 = 1

2ω4 L2, L2222 = 5

8ω6 L2, L22222 = 7

8ω8 L2 (A23)

L4 = 3

8ω2

(
1 + N2

0

)
, L42 = 1

ω2 L4, L422 = 4

3ω4 L4, L4222 = 2

ω6 L4, L42222 = 16

5ω8 L4 (A24)

L44 = 1

32ω5

(
67N0 + 17N3

0

)
, L442 = 5

3ω2 L44, 4L4422 + 2L2424 = 35

2ω4 L44,

L44222 + L42422 = 21

2ω6 L44 (A25)

L444 = 3

162ω8

(
513 + 1138N2

0 + 125N4
0

)
, L4442 = 2

ω2 L444, L44422+L44242 = 8

ω4 L444 (A26)

L4444 = 1

211ω11

(
305141N0 + 178330N3

0 + 10689N5
0

)
, L44442 = 55

ω2 L4444 (A27)

L44444 = 3

212ω14

(
971046 + 3105983N2

0 + 783020N4
0 + 29183N6

0

)
(A28)
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