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Abstract

Two possibile applications of the optimized expansion for the free en-

ergy of the quantum-mechanical anharmonic oscillator are discussed.

The first method is for the finite temperature effective potential; the

second one, for the classical effective potential. The results of both

methods show a quick convergence and agree well with the exact free

energy in the whole range of temperatures.

1



1. The quantum mechanical anharmonic oscillator (AO) with a Hamiltonian

H =
p2

2
+

m2x2

2
+ λx4 (1)

is equivalent [1] to the theory of a scalar field in the Euclidean space-time of
one-dimension (time) with a classical action given by

S[x] =
∫

[

1

2
x(t)(−∂2 + m2)x(t) + λx4(t)

]

dt. (2)

After rescaling all quantities in terms of λ, only one dimensionless parameter
z = m2

λ2/3 remains; therefore, when discussing numerical results, we put λ = 1
without a loss of generality. The energy spectrum of the AO can be calcu-
lated numerically and provides a simplest test for approximation methods in
quantum field theory (QFT) (f.e. loop expansion [2], 1/N expansion, loop
expansion for composite operators [3], optimized expansion (OE) [4]). The
conventional loop expansion gives the Rayleigh-Schrödinger series which is
asymptotic for the AO [1]; hence, the numerical results for energy levels are
good only for large values of the parameter m2

λ2/3 . In the 1/N expansion the
energy levels can be calculated from spectral properties of Green’s functions,
derived from the given order effective action. The results show a quick con-
vergence and agree well with the exact spectrum of the AO, the quality of
approximation decreases for increasing level of excitation [5]. This is sim-
ilar in the OE; however, in this case the approximation becomes worse as
the parameter m2

λ2/3 decreases, becoming unapplicable in the double-well case
(m2 < 0) [5].

It is also interesting to discuss the partition function and the free energy
which contain information on the whole spectrum of the quantum system.
The field-theoretical methods for systematic approximations of the effective
action can be extended to finite temperature T in the Euclidean formalism
by compactifying the ”imaginary time” dimension with a period β = 1

T
. The

conventional loop expansion coincides with termodynamic perturbation the-
ory for free energy [6]. Here we study the approximations for the free energy,
obtained by two applications of the OE: (i) for the finite temperature effec-
tive potential, (ii) for the classical effective potential.

2. The first method is an extension of the OE for the effective action in
QFT [4] to finite temperature effective potential and has been studied in the
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space-time of arbitrary dimension [7]. Here we discuss the one-dimensional
case when the vacuum persistence amplitude is defined by the integral

Z[J ] =
∫

Dxe−S[x]+
∫

J(t)x(t)dt, (3)

over the functions x(t) which vanish at infinity. The effective action is defined
by

Γ[ξ] = ln Z[J ] −
∫

ξ(t)J(t)dt, (4)

where the expectation value of x is given by ξ(t) = δ lnZ
δJ(t)

. The extension to
finite temperature T consists in replacing the set of functions in the inte-
gral (3) by periodic functions with a period β = 1

T
. The infinite interval in

all integrals over t has to be replaced by the interval [0, β], we denote the cor-
responding quantities by Zβ, Γβ. The finite temperature effective potential
defined by

Vβ(ξ) =
1

β
Γβ[ξ]|

ξ(t)=ξ
(5)

has a meaning of the free energy of the quantum system interacting with a
constant electric field J , when the expectation value of the coordinate x is
given by ξ = const. The free energy F of the AO is determined by the value
of the finite temperature effective potential at minimum which corresponds
to J = 0.

The OE for the effective action is generated by the application of the
steepest-descent method to the generating functional Z[J ] with the classical
action modified to the form

Sǫ[x] =
∫

1

2
x(t)G−1(t, t′)x(t′)dtdt′

+ ǫ
[
∫ 1

2
x(t)(D−1(t, t′) − G−1(t, t′))x(t′)dtdt′ + λ

∫

x4(t)dt
]

, (6)

where D−1(t, t′) = (−∂2 + m2)δ(t − t′). After shifting x(t) by x0(t) chosen
to satisfy the classical equation of motion δSǫ

δx0(t)
= −J(t) and expanding the

exponential into Taylor series we obtain
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Z[J ] = e−Sǫ[x0]+
∫

J(t)x0(t)dt
∫

Dx′e−
∫

1

2
x′(t)G−1(t,t′)x′(t)dtdt′

×[1 − ǫ (
∫

1

2
x′(t)(∆−1(t, t′) − G−1(t, t′))x′(t′)dtdt′+ λ

∫

x0(t)x′3(t)dt

+ λ
∫

x′4(t)dt ) + ... ], (7)

where ∆−1(t, t′) = (−∂2 +m2 +12λx2
0(t))δ(t− t′). Upon Legendre transform,

the effective action (4) is obtained as a series in ǫ. The nth order term can
be represented diagramatically as a sum of n-vertex vacuum one-particle-
irreducible diagrams with Feynman rules of the modified theory (6). The
third order result is shown in Fig.1.

3. The finite temperature effective potential in the OE is given by the same
set of diagrams as the effective action, only the Feynman rules are replaced
by those at finite temperature. Since Vβ is a function of constant ξ, the
propagator can be chosen in the form

Gβ(t, t′) =
1

β
Σ∞

m=−∞ exp[−iωm(t− t′)]
1

ω2
m + Ω2

=
cosh[Ω

2
(|t − t′| − β)]

Ω sinh[βΩ
2

]
, (8)

with an arbitrary parameter Ω. The Matsubara frequencies are given by
ωm = 2πm

β
. At zero temperature the propagator becomes equal to

G∞(t, t′) =
∫ dp

2π
exp[−ip(t − t′)]

1

p2 + Ω2
=

exp[−Ω(|t − t′|]

2Ω
. (9)

The parameter ǫ is a formal parameter of expansion and is set equal to
one at the end. The exact Vβ(ξ), obtained as a sum of an infinite series,
does not depend on Ω, but a finite order truncation does. We can make the
nth-order approximant V

(n)
β (Ω, ξ) as insensitive as possible to small variation

of the unphysical parameter by choosing Ω equal to Ω̃(n, ξ, β) satisfying the
gap equation

δV
(n)
β

δΩ̃
= 0. (10)

In the approximate expression for the finite temperature effective potential
V

(n)
β (ξ) = V

(n)
β (ξ, Ω̃(n, ξ, β)) the optimal value of Ω changes from order to
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order, assuring the convergence of the expansion [8]. The first order of the
OE coincides with the finite temperature Hartree approximation, but the
variational interpretation cannot by maintained beyond the first order.

We calculated the finite temperature effective potential to third order in
the OE. In second order the gap equation has no real solution in some range of
temperatures, in this case the real part of the result has been taken. For the
single-well AO (m2 > 0) the symmetric minimum of the finite temperature
effective potential at ξ = 0 (OES) gives a very good description of the free
energy. The quality of approximation becomes worse for decreasing m2

λ2/3 . In
the most unfavourable case of the quartic oscillator (m2 = 0) the results of
three lowest orders are shown in Fig. 2 in comparison with the exact free
energy, calculated by the numerical procedure based on the modification of
the linear variational method [9].

In the double-well case (m2 < 0), there is a critical value zcr(n, β) of the

parameter m2

λ2/3 , above which the only minimum of V
(n)
β (ξ) is at ξ = 0, in

agreement with the exact result. However, for m2

λ2/3 below zcr a lower mini-
mum at ξ 6= 0 appears. As can be seen in Fig. 3, for m2 = −20, the value
of the finite temperature effective potential in the non-symmetric minimum
(OEN) gives much better approximation of the free energy than the value at
ξ = 0 (OES).

4. Different approximation schemes for the free energy can be obtained [10]
approximating the classical effective potential Vcl(x), defined by a simple
integral

Zβ[J = 0] = e−βF =
∫

dx0
√

(2πβ)
e−βVcl(x0). (11)

The local partition function Zx0 can be written as

Zx0 = e−βVcl(x0) =
∫

Dx
√

(2πβ)δ(x0 − x)e−S[x], (12)

where x =
∫

dτx(τ)

β
. For T = 0 the classical effective potential coincides with

the constraint effective potential [11].
The OE for the classical effective potential is generated by the application

of the steepest-descent method to Zx0 (12) with the modified classical ac-
tion (6). After shifting x(t) by a constant x0 and expanding the exponential
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into the Taylor series we have

Zx0 = e
−β

(

Ω
2

2
x2

0
+ǫ( 1

2
(m2−Ω2)x2

0
+λx4

0)
)

×
∫

Dx′
√

(2πβ)δ(x0 − x)e−
∫ β

0

1

2
x′(t)(−∂2+Ω2)x′(t) dt

× [1 − ǫ (
m2+12λx2

0 − Ω2

2

∫ β

0
x′(t)2 dt + λx0

∫ β

0
x′(t)3 dt

+ λ
∫ β

0
x′4(t) dt ) + ... ]. (13)

After performing the Gaussian integrals, the local partition function and the
classical effective potential can be calculated as series in ǫ. The given order
classical effective potential V n

cl (x0) in the OE can be represented diagramati-
cally, only one-particle irreducible diagrams are present, because by definition
x′(t) has zero vacuum expectation value. Therefore, the set of diagrams is
the same as in the case of the OE for the finite temperature effective poten-
tial, the only difference is in the propagator. In the case of the OE for the
classical effective potential the propagator does not contain zero modes and
equals

Gwzm
β (t, t′) =

2

β
Σ∞

m=1 exp[−iωm(t − t′)]
1

ω2
m + Ω2

= Gβ(t, t′) −
1

βΩ2
(14)

where Gβ(t, t′) is the finite temperature propagator (8). Performing the inte-
gration over x0 in (11) and calculating the free energy to the given order in ǫ
we would obtain the result coincident with the OE for the finite temperature
effective potential. However, a better approximation for the partition func-
tion can be obtained by reversing the order of operation: first to optimize
the given order classical effective potential

δV
(n)
cl

δΩ
= 0, (15)

and after to perform the integration over x0 in (11) numerically. The first
order of this approximation coincides with the Feynman-Kleinert (FK) vari-
ational determination of the classical effective potential [12, 13]. The OE
gives a possibility to calculate corrections to the variational classical effec-
tive potential, improving the FK approximation for partition function in a
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systematic way. For alternative methods of calculating corrections to FK
approximation see Refs. [10, 14].

5. We have studied the numerical results of the OE for the classical effective
potential in the first and third order (to avoid complications with complex
solutions of the second order). For m2 ≤ 0 the quality of the approxima-
tion becomes worse for decreasing m2

λ2/3 ; the results for the quartic oscillator
(m2 = 0) are compared with the exact free energy in Fig. 4. The first order
results (FK1) are better than obtained from the value of the finite temper-
ature effective potential at ξ = 0 (OES1); however, the third order results
(FK3) and (OES3) are very similar and agree well with the exact free en-
ergy calculated numerically. The differencies between the studied methods
decrease to zero for T = 0.

In the double-well case, the results of the OE for the classical effective
potential are better than obtained from the lowest minimum (at ξ 6= 0) of
the effective potential (OEN). The quality of the approximation improves for

increasing |m2|

λ2/3 . For m2 = −20 the first order results (FK1) are indistinguish-
able from the exact results on the scale of Fig. 3. In Fig. 5 we compare the
results of both methods for larger range of temperatures, the convergence in
the FK approach is better than in the case of the OEN. However, one has
to notice that the numerical calculations are much more complicated in the
OE for the classical effective potential. Moreover, a generalisation of the FK
approach to the true QFT (with an untrivial space dimension) is difficult,
even in the lowest order.
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Figure captions

Figure 1. The effective action to third order of the optimized expansion. The
full line is an arbitrary propagator G(t, t′), the rule denotes the two-particle
vertex ∆−1(t, t′) − G−1(t, t′).

Figure 2. The free energy F of the quartic oscillator (m2 = 0), obtained as
the value of the finite temperature effective potential at ξ = 0 in first three
orders (OES1, OES2, OES3) of the OE, plotted vs. the inverse temperature
1/T .

Figure 3. The free energy F of the double-well oscillator (m2 = −20), ob-
tained in the OE as the value of the effective potential at ξ = 0 (OES), and
at ξ 6= 0 (OEN).

Figure 4. The free energy F of the quartic oscillator (m2 = 0), calculated
with the classical effective potential in first (FK1) and third (FK3) orders of
the OE.

Figure 5. The free energy F of the double-well oscillator (m2 = −20), cal-
culated with the classical effective potential in first (FK1) and third (FK3)
orders of the OE, compared with the value of the finite temperature effective
potential at ξ 6= 0 (OEN1, OEN3).
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