Reply to Comment on 'Coupled anharmonic oscillators: the Rayleigh-Ritz approach versus the collocation approach'

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2011 Phys. Scr. 83047004
(http://iopscience.iop.org/1402-4896/83/4/047004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 89.77.52.235
The article was downloaded on 18/03/2011 at 18:13

Please note that terms and conditions apply.

REPLY TO COMMENT

Reply to Comment on 'Coupled anharmonic oscillators: the Rayleigh-Ritz approach versus the collocation approach,

Arkadiusz Kuroś and Anna Okopińska
Institute of Physics, Jan Kochanowski University, Świȩtokrzyska 15, 25-406 Kielce, Poland
E-mail: okopin@fuw.edu.pl

Received 26 January 2011
Accepted for publication 4 March 2011
Published 18 March 2011
Online at stacks.iop.org/PhysScr/83/047004

Abstract

The Comment by Amore et al (2011 Phys. Scr. 83047003) proves only that the results of the collocation approach become upper bounds for bound-state energies in the limit of an infinite number of grid points N. We point out that the results obtained at finite N may lie below the exact results and should be taken with care.

PACS number: 03.65.Ge

The aim of our paper 'Coupled anharmonic oscillators: the Rayleigh-Ritz approach versus the collocation approach' [1] was not to question the validity of the collocation method based on little sinc functions or its variational improvement [2, 3], but rather to show that the application of the method requires some care. In the collocation approach, the Hamiltonian matrix is calculated only approximately; therefore the method does not have a variational character [4, 5]. Recovery of a variational behavior is expected when the number of points in the grid N is sufficiently high [5], and such an expectation has been also expressed for the optimized collocation method based on little sinc functions by Amore et al [2]. This paper does not provide a convergence proof but only shows that the method yields accurate approximations for some one-dimensional (1D) potentials. In the Comment by Amore et al [6], the authors prove that the variational character is recovered but only in the limit of infinite N. We want to point out that the results obtained at finite N are not necessarily upper bounds.

In a paper on the 2D Pullen-Edwards problem [3], Amore and Fernández presented the results of the optimized collocation method obtained at finite N. The eigenenergies, given with a precision of 17 digits, were lower than the results reported in the literature, which caused our doubts [1] about their accuracy. In [6], Amore et al explain that the results were in error since their calculations were performed
to 12 digit accuracy. By repeating the calculations with a numerical precision of 24 digits, they obtained more accurate results; however, the computational cost had to be quite high. Our comparison of the convergence rate of the optimized collocation method with that of the optimized Rayleigh-Ritz method [1] shows that for the Pullens-Edwards Hamiltonian, the computational cost of the collocation method is higher and rapidly grows with the desired accuracy. Of course, in solving problems with a greater number of degrees of freedom and/or more complicated potentials, the advantages of the collocation approach over the Rayleigh-Ritz approach can be seen. However, in any case, discussion of the accuracy of the collocation approach is more complicated and has to be carefully performed.

References

[1] Kuroś A and Okopińska A 2011 Phys. Scr. 83015003
[2] Amore P, Cervantes M and Fernández F M 2007 J. Phys. A: Math. Theor. 4013047
[3] Amore P and Fernández F M 2010 Phys. Scr. 81045011
[4] Wales D J 2003 Energy Landscapes with Applications to Clusters, Biomolecules and Glasses (Cambridge: Cambridge University Press) 147-9
[5] Barletta P, Lombardi M and Kievsky A 2004 Few-Body Syst. 3411
[6] Amore P, Fernández F M and Rodriguez M 2011 Phys. Scr. 83047003

