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allowing determination of the asymptotic expression for the linear entropy. Entanglement properties are
dramatically influenced by the anisotropy of the confining potential in the strong-correlation regime.
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1. Introduction

The Hookean system composed of Coulombically interacting
particles confined in a harmonic potential is of increasing interest
as it provides an effective model of semiconductor quantum dots
(QDs) [1]. Determination of the amount of entanglement in various
states of such systems is important in view of their possible appli-
cations in quantum information technology [2]. The simplest can-
didate for studying the entanglement properties is the two-particle
Hookean system. Although the system was considered in various
theoretical contexts both in 2D [3–9] and in 3D case [9–12], the
influence of the confinement anisotropy on entanglement has not
been investigated so far. In this Letter we undertake the investiga-
tion of this issue, restricting ourselves to the 2D case, where the
Hamiltonian is of the form

H =
2∑

i=1

[
p2

i

2m∗ + m∗

2

(
ω2

x x2
i + ω2

y y2
i

)] + e2

ε∗|r2 − r1| . (1)

With ε∗ being the effective dielectric constant and m∗ the effective
electron mass the above Hamiltonian is a frequently used model of
the two-electron QD.

After transformation r �→
√

2h̄
m∗ωx

r, E �→ h̄ωx E
2 , the Schrödinger

equation takes a form

HΨ (r1, r2) = EΨ (r1, r2), (2)

where the Hamiltonian is given by

* Corresponding author.
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H =
2∑

i=1

[
−1

2
�ri + 2x2

i + 2ε2 y2
i

]
+ g

|r2 − r1| . (3)

The dimensionless coupling g = e2

ε∗
√

2m∗
ωxh̄3 represents the ratio of

the Coulomb repulsion to the confinement energy and the dimen-
sionless parameter ε = ωy

ωx
measures the anisotropy of the confin-

ing potential.
We will analyze the dependence of the entanglement between

the particles in the ground-state of the system on the interaction
strength g and the anisotropy parameter ε , paying particular at-
tention to the regime of large g . In the case of finite ε , the limit
of g → ∞ corresponds to the situation in which both frequencies
of the trap tend to zero. In this case, regardless of the value of ε ,
the correlations play an essential role. In this Letter we provide a
method for determining the natural orbitals in the g → ∞ limit by
applying the harmonic approximation to the anisotropic confine-
ment case. We derive an explicit representation of the asymptotic
natural orbitals in terms of one-dimensional orbitals defined by
integral equations. This enables easy determination of the asymp-
totic occupancies and entanglement entropies for the whole range
of ε . For finite values of g we determine the numerically exact
results with the Rayleigh–Ritz method and demonstrate how the
asymptotic values are attained. For all anisotropies, including the
isotropic limit ε = 1, the asymptotic values of entanglement en-
tropies are properly determined by the harmonic approximation.

The Letter is arranged as follows. In Section 2 we discuss the
two-particle state characteristics. In Section 3 we show the relia-
bility of the harmonic approximation in the regime of large g and
provide the asymptotic Slater–Schmidt decomposition. In this sec-
tion the entanglement properties are examined in detail. Finally, in
Section 4 we make the concluding remarks.

0375-9601/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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2. Two-particle state characteristics

2.1. Energy eigenspectrum

Consider a 2D system consisting of two identical fermions with
a Hamiltonian given by (3). Since the Hamiltonian does not depend
on spin, the solution of the Schrödinger equation

HΨ (ζ1, ζ2) = EΨ (ζ1, ζ2), (4)

where ζi = (ri, σi), factorizes to the form

Ψ
S
T (ζ1, ζ2) = χ∓

sz
ψ±(r1, r2), (5)

where sz = σ1 + σ2 and the labels correspond to the singlet (S)
and triplet (T) states, the spin functions of which are given by
χ∓

sz=0 = 1√
2
(| 1

2 〉|− 1
2 〉 ∓ |− 1

2 〉| 1
2 〉) and χ+

sz=±1 = |± 1
2 〉|± 1

2 〉. The spa-

tial wavefunctions ψ± , that are symmetric (+) or antisymmetric
(−) under permutation of the electrons, may be chosen real, since
the interaction and confinement potentials are real functions.

Introducing the center of mass R = 1
2 (r1 + r2) = (X, Y ) and rel-

ative coordinates r = r2 − r1 = (x, y), the Hamiltonian (3) may be
written as H = HR + Hr , where

HR = −∇2
R/4 + 4

(
X2 + ε2Y 2), (6)

Hr = −∇2
r + x2 + ε2 y2 + g

r
. (7)

With wavefunction represented as a product Ψ (x, y, X, Y ) =
ψ R(X, Y )ψr(x, y), the Schrödinger equation (2) separates into two
equations

HRψ R(R) = E Rψ R(R), (8)

Hrψr(r) = Erψr(r), (9)

where the total energy E = Er + E R . As the center-of-mass coor-
dinate remains the same upon the interchange of electrons, the
symmetry requirement reduces to the symmetry of the relative
wavefunction under inversion r → −r. Because of the invariance
of Hr to reflections about the x- and y-axes, the (x, y)-parity of
ψr(x, y) is well defined. The parity (+,+) or (−,−) corresponds
to spin singlet eigenfunctions, and the parity (+,−) or (−,+) to
the spin triplet ones. The solutions of the CM equation (8) are
given by

ψ R
nm(X, Y ) = ϕn(2X)ϕm(2

√
εY ), (10)

with the HO eigenfunction

ϕn(x) = e−x2/2 Hn(x), (11)

and corresponding energies E R
nm = 2(n + 1

2 ) + 2ε(m + 1
2 ). The

relative-motion equation (9) is separable only if ε = 1,2,1/2. The
first case, ωx = ωy , being separable in polar coordinates, was much
studied in the literature [13–15] and in addition the closed-form
solutions for particular frequencies have been derived [16]. In the
case ωy = 2ωx , Eq. (9) is separable in parabolic coordinates [17]
and the closed-form solutions may be also obtained for particular
values of ωx [7]. For other ratios of confinement frequencies the 2D
Schrödinger equation has to be solved by numerical techniques.

2.2. Entanglement measures

Entanglement is a term used to describe quantum correlations
between the particles. A convenient tool to analyze those correla-
tions is the reduced density matrix (RDM) defined as [18]

ρred
(
ζ, ζ ′) = Trζ2

(〈ζ, ζ2|Ψ 〉〈Ψ ∣∣ζ2, ζ
′〉). (12)

For identical fermions the bi-partite pure state |Ψ 〉 can be ex-
pressed as a combination of the Slater determinants made out
of one-particle spin-orbitals in which its RDM (12) is diagonal
[19–21]. The number of expansion coefficients appearing in the
Slater decomposition, that are different from zero, is called the
Slater rank (SR). The pure state of identical particles is consid-
ered non-entangled if SR = 1, i.e. the only correlations that exist
between the fermions can be attributed to their indistinguishable
nature [21].

The total wavefunction factorizes into spatial and spin compo-
nents (5) and the same holds for the reduced density matrix (12)

ρ±
red,sz

(
ζ, ζ ′) = ρ∓

red,sz

(
σ ,σ ′)ρ±

red

(
r, r′), (13)

where ρ±
red(r, r′) = ∫

ψ±(r, r2)ψ
±(r2, r′)dr2 and the spin parts

ρ−
red,sz=0 = ρ+

red,sz=0 = diag(1/2,1/2), ρ+
red,sz=1 = diag(1,0) and

ρ+
red,sz=−1 = diag(0,1).

The eigenvalue problem for the spatial part ρ±
red(r, r′) can be

written in the form∫
ρ±

red

(
r, r′)v±

l

(
r′)dr′ = λ±

l v±
l (r), (14)

which determines the natural orbitals v±
l and the occupancies λ±

l .
The families {v+

l (r)} and {v−
l (r)} form orthonormal basis sets in

the space of symmetric and antisymmetric functions, respectively.
The spatial parts of two-particle functions may be represented in
terms of natural orbitals. Representation for the symmetric func-
tion takes the form of the Schmidt decomposition

ψ+(r1, r2) =
∑

l

k+
l v+

l (r1)v+
l (r2), (15)

and in the case of antisymmetric function the Slater decomposition
holds [21]

ψ−(r1, r2) =
∑

l

k−
l√
2

[
v−

2l−1(r1)v−
2l(r2) − v−

2l−1(r2)v−
2l(r1)

]
. (16)

The coefficients k+
l and k−

l are related to the eigenvalues of (14)

by λ+
l = [k+

l ]2 and λ−
l = [k−

l ]2

2 , respectively. The eigenvectors v−
2l

and v−
2l−1 correspond to the same eigenvalue λ−

l , which means
that eigenvalues of the spatial RDM of antisymmetric wavefunction
are doubly degenerate and satisfy the conservation of probability
2
∑

l λ
−
l = 1. We assume that the eigenvalues λ±

l are ordered such
that λ±

0 � λ±
1 � · · · . It can be easily inferred from the appropri-

ate decompositions of the spatial parts (15) or (16) that the SR
is related to the number n of non-vanishing eigenvalues of the
spatial RDM (being not necessarily different) as follows: the sin-
glet and the triplet states with sz = 0 have SR = n, whereas the
triplet states with sz = −1,1 have SR = n/2. The two-particle state
is non-entangled if and only if SR = 1 and deviations from such a
form may be used to measure the amount of entanglement in the
system.

The entanglement depends on the whole spectrum of the RDM
and its characteristics may be constructed from the natural or-
bitals occupancies λl [22–24]. In this work we consider the von
Neumann (vN) entropy and the linear entropy that are the most
popular measures of entanglement in pure states. The vN entropy
[25,26,21] is defined as

S = −Tr[ρred Log2 ρred], (17)

and in the two-particle case separates into

S = Sspin + SvN, (18)
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where the spin contribution Sspin = 1 if sz = 0 and Sspin = 0 if
sz = ±1.

The space part that depends on interactions may be calculated
with the RDM eigenvalues as

SvN = −
∑
l=0

λl Log2 λl. (19)

The linear entropy [27]

L = 1 − Trρ2
red (20)

can be calculated directly from the above definition, which is a big
advantage over the case of vN entropy (17) since diagonalization
of the RDM is not needed.

3. Harmonic approximation

3.1. Approximate spectrum

The harmonic approximation was applied with success in
the case of circular [16,28,29] and anisotropic confinement po-
tential [30]. The anisotropic potential V (x, y) = x2 + ε2 y2 +
g/

√
x2 + y2 has two local minima at (xcl,0) and (−xcl,0), where

xcl = (g/2)
1
3 is the classical equilibrium distance between the

Coulombically interacting particles in the trap. Expanding V (x, y)

into a Taylor series around the minimum at rmin = (xcl,0) and
retaining the terms up to second order, the relative motion equa-
tion (9) gets approximated by the Schrödinger equation
[−�r + V (rmin) + 3(x − xcl)

2 + (
ε2 − 1

)
y2]ψr = Erψr, (21)

the eigenvalues of which are of the form

Er
nm = V (rmin) + 2

√
3

(
1

2
+ n

)
+ 2

(
1

2
+ m

)√
ε2 − 1. (22)

The corresponding eigenfunctions

ψr
nm(x, y) = ϕn

(
31/4(x − xcl)

)
ϕm

((
ε2 − 1

)1/4
y
)
, (23)

where ϕn is given by (11), provide approximations to the rela-
tive motion wavefunctions only around (xcl,0). The approximations
around (−xcl,0) are obtained by the transformation x �→ −x. The
states of relative motion with well-defined parity (x, y) may be
constructed as

ψr,±
nm (x, y) = ψr

nm(x, y) ± ψr
nm(−x, y), (24)

where the sign +/− relates to the even/odd x-parity. Notice that
each energy level of the relative motion in the harmonic approx-
imation is doubly degenerate, namely the states with spatial x–y
parity: (−,+), (+,−) are degenerate with those of (+,+), (−,−),
respectively.

The quality of harmonic approximation has been tested by com-
parison with numerical solutions of the relative motion equation
(9) obtained through the exact diagonalization method in the ba-
sis of the two-dimensional harmonic oscillator eigenfunctions of
the required parity. In Fig. 1 the excitation energies Er

i − Er
0 of the

Hamiltonian (7) are plotted in function of ln g for a large (ε = 1.7)
and a small (ε = 1.01) anisotropy. The horizontal lines mark the
results of the harmonic approximation (22), which becomes exact
at g → ∞. We observe that for smaller values of ε the asymptotic
behavior of the relative motion energies is reached at larger values
of g . This is consistent with the fact that the closer the value of ε
to one, the larger the value of g at which the harmonic approxi-
mation is applicable.

For transparency of presentation we concentrate on analyz-
ing the singlet and triplet states of the lowest energy that be-
come degenerate in the limit of g → ∞. They correspond to

Fig. 1. Excitation energies Er
i − Er

0 in function of ln g for ε = 1.7 (top) and ε =
1.01 (bottom). The horizontal lines mark the asymptotic results of the harmonic
approximation.

the ground state of CM; thus the total spatial wavefunctions are
ψ+ = ψ

r,+
00 ψ R

00 and ψ− = ψ
r,−
00 ψ R

00, respectively. Harmonic approx-
imations to those functions can be written in the form convenient
for further analysis

ψ±(x1, x2, y1, y2) = C±(g, ε)h(y1, y2)
(
q(x1, x2) ± q(x2, x1)

)
,

(25)

where

q(x1, x2) = ϕ0
(
31/4(x2 − x1 − xcl)

)
ϕ0(x2 + x1)

= e− 1
2 [√3(x2−x1−xcl)

2+(x1+x2)2], (26)

h(y1, y2) = ϕ0
((

ε2 − 1
)1/4

(y2 − y1)
)
ϕ0

(√
ε(y2 + y1)

)
= e− 1

2 [
√

ε2−1(y1−y2)2+ε(y1+y2)2], (27)

and the normalization constants are given by

C±(g, ε) =
√

2 3
1
8 ε

1
4 (ε2 − 1)

1
8

π

√
1 ± e−√

3(
g
2 )2/3

−→
g→∞

√
2 3

1
8 ε

1
4 (ε2 − 1)

1
8

π
.

(28)

3.2. The linear entropy

Quantum entanglement in two-particle systems is usually quan-
tified by entropic measures. The easiest to calculate is the linear
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3844 P. Kościk, A. Okopińska / Physics Letters A 374 (2010) 3841–3846

Fig. 2. The linear entropy of the lowest singlet state for various anisotropy ratios ε
in function of ln g . The horizontal lines show the asymptotic values at g → ∞.

entropy that may be obtained directly from the definition (20) us-
ing the RDM calculated from the spatial wavefunction. The asymp-
totic expression for wavefunction (25) enables us to determine the
linear entropy in the limit of g → ∞. For the lowest singlet state
the explicit expression reads

Lg→∞(ε) = 1 − 3
1
4 (ε2 − 1)

1
4

√
ε(1 −

√
3

2 )

ε + √
ε2 − 1

. (29)

Although the above formula is strictly valid only if ε > 1, since it
has been derived from the harmonic approximation, we observe
that its limit at ε → 1+ is equal to one and coincides thus with
the exact asymptotic value of the linear entropy.

In Fig. 2 we show how the linear entropy approaches the
asymptotic limits for various values of the anisotropy parameter.
The results at finite values of g have been obtained by numeri-
cal integration with the use of wavefunctions determined by the
Rayleigh–Ritz procedure. At large anisotropy the dependence on g
is very similar and the asymptotic values of the linear entropy for
ε = 2 and ε = 4 are nearly equal to that in the infinite anisotropy
limit Lg→∞(ε → ∞) ≈ 0.759142. Only at ε � 1.4 asymptotic val-
ues of the linear entropy start to visibly differ from 0.759142 and
reach the value one at ε → 1+ .

In this range of ε the linear entropy exhibits a local maximum
and approaches monotonically from above its asymptotic value de-
termined by the formula (29), which confirms its validity. The
smaller is the anisotropy, the larger is the value of g at which
it occurs, which is in accordance with our earlier discussion. The
dependence of the linear entropy on ε becomes strong for large
enough g , but only in a small vicinity of ε = 1.

3.3. Asymptotic Slater–Schmidt decomposition

In order to calculate the vN entropy, determination of the nat-
ural orbital occupancies is necessary. The asymptotic behavior at
g → ∞ may be determined by deriving the Schmidt decomposi-
tion of the asymptotic two-particle function (25). To this end it
is convenient to introduce new coordinates x1 �→ x̃1 − xcl

2 , x2 �→
x̃2 + xcl

2 , so as the function q (26) transforms into

q(x1, x2) �→ q̃(x̃1, x̃2) = e− 1
2 [√3(x̃2−x̃1)2+(x̃1+x̃2)2]. (30)

Being real and symmetric, the function q̃ has the Schmidt decom-
position

q̃(x̃1, x̃2) =
∑
n=0

k(1)
n ϑ

(1)
n (x̃1)ϑ

(1)
n (x̃2). (31)

It is worthwhile to notice that the function (30) is g-independent
and so are the orbitals ϑ

(1)
n and the corresponding expansion coef-

ficients k(1)
n . They can be determined from the integral equation

∞∫
−∞

q̃
(
x, x′)ϑ(1)

n
(
x′)dx′ = k(1)

n ϑ
(1)
n (x), (32)

Changing the variables back to x1 and x2, one gets

q(x1, x2) =
∑
n=0

k(1)
n ϑ

(1)
n

(
x1 + xcl

2

)
ϑ

(1)
n

(
x2 − xcl

2

)
. (33)

The function h(y1, y2) is real and symmetric, thus its Schmidt de-
composition reads

h(y1, y2) =
∑
m=0

k(2)
m ϑ

(2)
m (y1)ϑ

(2)
m (y2), (34)

where ϑ
(2)
m and k(2)

m are determined by

∞∫
−∞

h
(

y, y′)ϑ(2)
m

(
y′)dy′ = k(2)

m ϑ
(2)
m (y), (35)

with the orthogonal orbitals ϑ
(2)
m assumed to be normalized to

unity. Using the expansions (33) and (34) we represent the wave-
functions (25) as

ψ±(r1, r2) =
∑
l=0

k±
l

[
Ll(r1)Rl(r2) ± Rl(r1)Ll(r2)

]
, (36)

where l = (n,m), k±
l = C±(g, ε)k(1)

n k(2)
m and

Ll(r) = ϑl

(
x + xcl

2
, y

)
= ϑ

(1)
n

(
x + xcl

2

)
ϑ

(2)
m (y),

Rl(r) = ϑl

(
x − xcl

2
, y

)
= ϑ

(1)
n

(
x − xcl

2

)
ϑ

(2)
m (y),

are the one-particle orbitals centered around classical equilibrium
points which satisfy 〈Ll|Lk〉 = δkl and 〈Rl|Rk〉 = δkl . If we define the
new orbitals

vl(r) = Rl(r) + Ll(r)√
2

, ul(r) = Ll(r) − Rl(r)√
2

,

that fulfill 〈ul|vl〉 = 0, the spatial wavefunctions can be expressed
as

ψ+(r1, r2) =
∑
l=0

k+
l

[
vl(r1)vl(r2) − ul(r1)ul(r2)

]
, (37)

and

ψ−(r1, r2) =
∑
l=0

k−
l

[
ul(r1)vl(r2) − vl(r1)ul(r2)

]
. (38)

In the limit of g → ∞ we have k+
l = k−

l = kl and the integral
overlap 〈Ll|Rk〉 vanishes for any l,k, and because of that ‖ψ±‖2 =
2
∑

l k2
l , 〈ul|uk〉 = 〈vl|vk〉 = δlk , 〈ul|vk〉 = 0. In this limit the sym-

metric spatial wavefunction coincides with the absolute value of
the antisymmetric one ψ+(r1, r2) = |ψ−(r1, r2)|. Moreover, (37)
and (38) yield the Schmidt decomposition (15) and the Slater de-
composition (16), respectively. In both cases the decomposition of
the spatial RDM reads

ρ±
red

(
r, r′) =

∑
l=0

k2
l

[
vl(r)vl

(
r′) + ul(r)ul

(
r′)], (39)
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Fig. 3. Four largest occupancies in function of ln g at fixed anisotropy ε = 1.01. The
asymptotic values are marked by horizontal lines.

which shows that the eigenvectors vl and ul correspond to the

same occupancy λl = 23
1
4 ε

1
2 (ε2−1)

1
4

π2 (k(1)
n k(2)

m )2 with the coefficients

k(1)
n and k(2)

n determined by Eqs. (32) and (35), respectively. The
above equations can easily be solved through discretization tech-
nique. By discretizing the x(y) and x′(y′) variables with equal
subintervals of length �x (�y), the integral equations turn into
algebraic eigenvalue problems∑

s

[
A(i)

rs − δrsk
(i)
n

]
ϑ

(i)
n (zs) = 0, r, i = 1,2, (40)

where A(1)
rs = q̃(xr, xs)�x and A(2)

rs = h(yr, ys)�y. Diagonalization
of the matrix [A(i)

rs ]N×N provides thus a set of approximations to
N of the largest modulus eigenvalues k(i)

n . One has to notice that
the function h depends on ε and the range of argument where
its value is non-negligible strongly increases when ε → 1+ . There-
fore, in the case of small anisotropy, an appropriately large interval
must be discretized to achieve a reasonable accuracy in the diag-
onalization of [A(2)

rs ]N×N . In Fig. 3 the four largest natural orbital
occupancies determined in function of g by the numerically exact
Rayleigh–Ritz procedure are shown for the nearly isotropic ex-
ample of ε = 1.01. It is seen how they converge into asymptotic
doublets of the values determined in the harmonic approximation
by the procedure described above. The behavior of the asymptotic
occupancies at varying anisotropy ratio ε is shown in Fig. 4. For
a better display the results are presented in function of ln(ε − 1),
since the occupancies are strongly sensitive to small changes in ε
around ε = 1. In the limit of ln(ε − 1) → −∞, the values of all
asymptotic occupancies tend to zero in such a way that their sum
is equal to 1

2 . Notice that this behavior is related to the degeneracy
that appears in the energy spectrum of the system in the circular
symmetry limit. The clustering of occupancies around zero value
is clearly visible in Fig. 4. With increasing anisotropy the situation
changes dramatically, namely a tiny deviation from circular sym-
metry leads to the lifting of the clustering. The value of ln(ε −1) ≈
−10, at which the effect is clearly visible, corresponds to a very
small anisotropy, ε ≈ 1.00005. At higher confinement anisotropies,
all the occupancies but the largest one exhibit a local maximum.
The larger the value of the occupancy, the larger is the value
of ε at which the maximum occurs. Above the critical thresh-
old εcr ≈ 1.4 (ln(εcr − 1) ≈ −1) all those occupancies saturate at
vanishingly small values. The largest occupancy λ

g→∞
0 performs

differently, as it grows monotonically with increasing ε at the cost
of the remaining occupancies and saturates above εcr . The limit
of ln(ε − 1) → ∞ corresponds to ε → ∞, i.e. a one-dimensional

Fig. 4. Behavior of the six largest asymptotic occupancies in function of ln(ε − 1).
The limit of the largest occupancy λ

g→∞
0 ≈ 0.490688 as ε → ∞ is marked by a

horizontal line.

motion along the x-axis. In this limit λ
g→∞
0 ≈ 0.490688 and the

sum of all the remaining occupancies 2
∑

l=1 λ
g→∞
l is only about

0.018624, which means that the natural orbitals v0(r), u0(r) are
the only two that are substantially occupied. This indicates that in
the case of strong interaction for enough anisotropic confinement
(ε � εcr), the terms higher than l = 0 in (36) contribute very little
and the spatial functions approach the form

ψ±
g→∞(r1, r2) ≈ 1√

2

[
L0(r1)R0(r2) ± R0(r1)L0(r2)

]
. (41)

The total singlet and triplet wavefunctions with sz = 0 are thus
well approximated by

Ψ
S
T

sz=0(ζ1, ζ2) ≈ 1

2

(∣∣∣∣1

2

〉∣∣∣∣−1

2

〉
∓

∣∣∣∣−1

2

〉∣∣∣∣1

2

〉)

× (
L0(r1)R0(r2) ± R0(r1)L0(r2)

)
. (42)

Each of them constitutes a sum of two Slater determinants (SR = 2)
and represents an entangled state. The situation is different for the
triplet components with sz = ±1, since their total wavefunctions

Ψ T
sz=±1(ζ1, ζ2) ≈ 1√

2

∣∣∣∣±1

2

〉∣∣∣∣±1

2

〉(
L0(r1)R0(r2) − R0(r1)L0(r2)

)
(43)

represent one Slater determinant (SR = 1) and those states have to
be regarded as non-entangled. It has to be stressed however, that
this is only an approximate result since even at ε → ∞ the other
occupancies do not strictly vanish.

3.4. Comparison of the linear and vN entropy

Since the linear entropy is relatively easy to calculate, several
works proposed [24,26,31,32] to use it instead of the vN entropy
arguing that their dependence on parameters of the system is
similar. Here we test this conjecture for the lowest singlet state
by comparing the behavior of both measures in function of ε at
g → ∞, where the differences between both measures are the
most pronounced. We observed that for ε large, the dependence
between the vN and linear entropy is approximately linear and
well fitted by Sg→∞(ε) ≈ 12.8Lg→∞(ε) − 7.6. The comparison of
the so rescaled linear entropy with vN entropy is presented in
Fig. 5 in function of ln(ε − 1). Above εcr ≈ 1.4 both entropies sat-
urate at constant values, Sg→∞

ε→∞ ≈ 2.13618 and Lg→∞
ε→∞ ≈ 0.75914,

respectively. The closeness of those values to 2 and 3/4 can be
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Fig. 5. Comparison of the asymptotic vN entropy Sg→∞ and the (appropriately
rescaled) linear entropy Lg→∞ in function of ln(ε − 1).

attributed to the dominance of the two occupancies λ+
0 ≈ λ+

1 in
this regime. The vN entropy grows with decreasing ε , which re-
flects the fact that the smaller is the value of ε , the larger number
of orbitals in the sum (36) becomes important. The increase is
nearly linear which means that the asymptotic vN entropy varies
logarithmically with ε and tends to infinity when the confine-
ment becomes circularly symmetric (ε → 1+). Being a bounded
function, the linear entropy performs differently at very small
anisotropies, where its behavior starts to deviate from the lin-
ear one and approaches the maximum possible value 1 in the
limit of ε → 1+ . Although in different ways, but both entangle-
ment measures clearly demonstrate that the more circular is the
confinement of strongly interacting particles, the more entangled
is the system. The difference in behavior of the vN entropy and
the linear entropy appears only in the vicinity of ε = 1, where the
system becomes degenerate.

4. Summary

We performed a detailed examination of the entanglement
properties for the system of two Coulombically interacting elec-
trons confined in a 2D anisotropic harmonic potential. The har-
monic approximation has been developed in order to study the
strongly interacting (weak confinement) case. Using the harmonic
approximation we derived an explicit expression for the linear
entropy of the lowest singlet state at g → ∞. The occupancies
λ

g→∞
l in the asymptotically degenerate lowest singlet and triplet

states may be easily determined numerically within this approx-
imation. Performing numerical calculation through the Rayleigh–
Ritz method we have also calculated the characteristics of the
system at finite values of g . We demonstrated how the occupan-
cies reach their asymptotic values as g is increased. The asymp-

totic occupancies are strongly sensitive to changes of ε in the
range of 1 < ε � εcr ≈ 1.4, while above εcr they practically reach
the values corresponding to infinite anisotropy ε → ∞, where the
value of λ

g→∞
0 ≈ 0.490688 is the only substantial. This results in

non-trivial entanglement properties since only two natural orbitals
contribute significantly to the lowest singlet and triplet states.
Furthermore, we have verified that the linear entropy is almost
linearly related to the corresponding vN entropy except of the re-
gion of very small anisotropy ε � 1.00005. Our calculations have
shown that the entanglement is relatively insensitive to the shape
of the harmonic confinement if the interaction is very weak (strong
confinement case). In the strong correlation case the influence of
anisotropy is much more pronounced.

It would be interesting to carry out an analysis of entanglement
for higher excited states. The thermal entanglement and the inter-
action with the environment will be the topic of further studies.
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