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Abstract We examine the entanglement in the ground states of helium and helium-like ions using an original
Hylleraas expansion. The von Neumann and linear entropies of the reduced density matrix are accurately com-
puted by performing the Schmidt decomposition of the S singlet spatial wavefunctions. The results presented
are more accurate than currently available in published literature.

1 Introduction

In recent years there has been a lot of interest in entanglement properies of few-body systems. Besides an
important role in quantum information technology, entanglement also attracts attention in view of the problem of
quantifying the amount of correlations in the systems. Mainly, two-particle model systems confined by various
potential have been studied in this respect [1–12]. The von Neumann entropy (vN) of the one-particle reduced-
density matrix (RDM) is accepted as a reliable entanglement measure for systems of two indistinguishable
particles [13]. At the same time, the vN entropy determines the strength of correlation in the system. The linear
entropy, being the lower approximation of the vN entropy, is also used to this end, since it can be more easily
calculated without knowing the spectrum of the RDM.

The quantum information content of two-electron atoms become also interesting for chemists. For example,
Manzano et al. [5], Dehesa et al. [14] and Benenti et al. [15] have studied the entanglement properties of the
ground and excited states of the helium atom. Lin et al. [16] explored entanglement in the ground and excited
states of the helium atom and helium-like ions, using configuration interaction wave functions constructed
with B-spline basis. Very recently, Lin et al. [17] studied entanglement in the ground states of helium and the
hydrogen negative ion, establishing the values of linear entropies with relatively small uncertainties. In most of
the studies mentioned above, only the linear entropy was used to quantify the amount of the entanglement. We
are aware of only four papers [15,18,22,23], where the results for the von Neumann entropy were reported.
However, there are large discrepancies between the results of those papers. This was our motivation for
performing accurate calculations of entropies for the helium isoelectronic series. We calculated the vN and
linear entropy, basing on the Schmidt decomposition of the two-particle wavefunction. In our calculations, we
used an original correlated Hylleraas basis which allows determination of the wavefunction within a reasonable
accuracy with relatively low computational cost.

This paper is organized as follows. In Sect. 2 we briefly discuss the procedure to analyze the entanglement
properties of the singlet S-symmetry states. Section 3 outlines our results, and some concluding remarks are
placed in Sect. 4.

P. Kościk (B) · A. Okopińska
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2 Methods

The Hamiltonian of atomic systems with two electrons and a nucleus of charge Ze is given by

H = −1

2
�2

1 −1

2
�2

2 − Z

r1
− Z

r2
+ 1

r12
, (1)

where atomic units are used. As mentioned before, we are interested in the singlet ground-state, the spatial
wave-function of which depends only on the radial coordinates r1, r2 and the inter-electronic angle θ . The
Schmidt decomposition of the wave-function has a form [20]

ψ(r1, r2) ≡ ψ(r1, r2, cos θ) =
∞∑

n,l=0

m=l∑

m=−l

anlu
∗
nlm(r1)unlm(r2), (2)

with unlm(r) = vnl (r)Ylm(θ,ϕ)
r and anl = 4πknl

2l+1 , where Ylm are the spherical harmonics and l and n are the
angular and principal quantum numbers, respectively. Both the radial orbitals vnl(r) and the coefficients knl
are real and can be determined by the following integral equations [19]

∞∫

0

fl(r1, r2)vnl(r2)dr2 = knlvnl(r1) (3)

with

fl(r1, r2) = r1r2
2l + 1

2

π∫

0

ψ(r1, r2, cos θ)Pl(cos θ) sin θdθ, (4)

where Pl are the Legendre polynomials. The natural orbitals unlm(r) are the eigenvectors of the spatial RDM

ρ(r, r′) =
∫

[ψ(r, r1)]∗ψ(r′, r1)dr1,

the eigenvalues of which, λnl , are related to the expansion coefficients in (2) by λnl = a2
nl . The nat-

ural orbitals {unlm(r)}m=l
m=−l correspond to the same occupation number λnl , which means that 2l + 1-

fold degeneracy occurs and, therefore, the normalization condition gives
∑

nl(2l + 1)λnl = 1. Using Eq.
(2), the identity [Yl,m(θ, ϕ)]∗ = (−1)mYl,−m(θ, ϕ) and the spin singlet function representation χS =

1√
2
(α(1)β(2) − α(2)β(1)), where α(β) denotes the up (down) spin, the Slater decomposition of the total

two-electron singlet S-state wavefunction can be easily inferred, namely:

Ψ (ξ1, ξ2) =
∞∑

n=0
l=0

anl SD[unl0α, unl0β] +
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i �= j
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where ν = 1(−1) for i = α(β), and SD denotes a Slater determinant made out of two spin orbitals,

SD[φi, ϕ j] = 2− 1
2
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φ(r1)i(1) ϕ(r1) j (1)
φ(r2)i(2) ϕ(r2) j (2)

∣∣∣∣.
Entanglement in pure states is usually quantified by the vN entropy of the RDM, which in the case of the

singlet sates takes the form

S = −Tr[ρ log2 ρ], (6)

or the linear entropy

L = 1 − Tr[ρ2], (7)

which both vanish when the corresponding total two-electron wavefunction can be expressed as a single
determinant [21]. The linear entropy can be calculated without determining the occupation numbers, as the
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spatial purity Tr[ρ2] can be expressed by the twelve-dimensional integral (see for example [14]). With the help
of (4) we derived an alternative representation of the purity by an infinite sum of eight-dimensional integrals

Tr[ρ2] = (2π)4
∞∑

l=0

∞∫

0

...

∞∫

0

π∫

0

...

π∫

0

(rr ′r1r2)
2

ψ(r, r1, cos θ)ψ(r ′, r1, cos θ ′)ψ(r, r2, cos θ ′′)ψ(r ′, r2, cos θ ′′′)
Pl(cos θ)Pl(cos θ ′)Pl(cos θ ′′)Pl(cos θ ′′′) sin θ sin θ ′ sin θ ′′

sin θ ′′′dr1dr2drdr ′dθdθ ′dθ ′′dθ ′′′, (8)

which may be useful when dealing with spherically symmetric two-particle systems. If most of the electrons’
correlation is captured by the partial components with low l, the sum (8) may be more effective than the
mentioned twelve-dimensional integral to calculate the purity.

The calculation of the vN entropy requires detemination of the Schmidt coefficients. For singlet S states,
we have in terms of the occupation numbers S = −∑

nl(2l + 1)λnl log2 λnl , L = 1 − ∑
nl(2l + 1)λ2

nl [9].
To determine the coefficients λnl = (

4πknl
2l+1 )

2 we solved Eq. (4) through a discretization technique. A set

of approximations to the nm + 1 coefficients knl can be thus obtained by diagonalizing the matrix [M (l)
i j ],

M (l)
i j = 	r fl(	ri,	r j), 	r = R/nm , i, j = 0, . . . , nm . [9], where R should be chosen as large as the

side of a square in which the functions fl(r1, r2) are mainly confined. Having the coefficients knl determined
in that way for l up to lm , we obtain the approximate entropies S = − ∑nm

n=0

∑lm
l=0(2l + 1)λnl log2 λnl and

L = 1−∑nm
n=0

∑lm
l=0(2l+1)λ2

nl . In order to obtain stable numerical values, the calculations have to be repeated
for larger and larger R and nm, lm until the results converge to the desired accuracy.

3 Numerical Results

In our ground-state calculations we employ the Hylleraas variational wave function

ψ(r1, r2, cos θ) =
∑

nmp

cnmpe−μssntmu p, (9)

with 0 ≤ n+m+p ≤ ω (m-even), where s = r1+r2, t = r1−r2, u = r12 = |r2−r1| = (r2
1 +r2

2 −2r1r2 cos θ)
1
2

and μ is a non-linear variational parameter.
The ground state energy E and the corresponding linear parameters cnmp are determined by the solution

of a generalized eigenvalue problem

∑

nmp

(Hn′m′ p′,nmp − E Sn′m′ p′,nmp)cnmp = 0 (10)

where Sn′m′ p′,nmp = 〈n′m′ p′|nmp〉 and Hn′m′ p′,nmp = 〈n′m′ p′|H |nmp〉, whereas, the non-linear parameter
μ is iteratively optimized so as to minimize the approximate energy ∂E (ω)/∂μ = 0.

For demonstration purpose, the ω-order ground state energies obtained as described above are shown in
Table 1, where the underlines represent the digits that agree with the very accurate results of Nakashima and
Nakatsuji [24].

Calculating entanglement entropies, we first determine the Schmidt coefficients by solving Eq. (3) numer-
ically. We found that for the Hylleras expansion, the integrals (4) can be carried out analytically: Substitution

of an explicit representation Pl(cos θ) = 2l ∑l
k=0(cos θ)k

(l
k

)( l+k−1
2
l

)
, and the Hylleras expansion (9) expressed

in r1, r2 and θ into (4) yields

fl(r1, r2) = C2l−1(2l + 1)r1r2e−μ(r1+r2)
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∑

nmp

cnmp

(
l

k

)( l+k−1
2
l

)
(r2 − r1)

m(r1 + r2)
n I (k, p) (11)
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Table 1 Ground state energies determined variationally as discussed in the text

ω Z = 1 Z = 2 Z = 3 Z = 4 Z = 5

6 −0.5277432488 −2.903723702 −7.279912718 −13.65556549 −22.03097079
8 −0.5277500643 −2.903724305 −7.279913342 −13.65556616 −22.03097150
10 −0.5277508656 −2.903724366 −7.279913402
12 −0.5277509860 −2.903724375
14 −0.5277510091

Table 2 The stable numerical results for the linear entropy L obtained at different R with different expansion lengthsω = 6, 10, 14
corresponding to number of terms 50, 161, 372, respectively

R = 7 R = 9 R = 10

ω = 6 0.0159173 0.0159162 0.0159162
ω = 10 0.0159172 0.0159157 0.0159157
ω = 14 0.0159172 0.0159157 0.0159157

Table 3 The linear entropy L computed at R = 10 with an expansion given by a 372-term wavefunction (ω = 14) as a function
of lm , for nm = 300, 600, 1200 corresponding to 	r = 30−1, 60−1, 120−1, respectively

nm = 300 nm = 600 nm = 1,200

lm = 0 0.0159242 0.0159207 0.0159205
lm = 1 0.0159194 0.0159159 0.0159157
lm = 2 0.0159194 0.0159159 0.0159157

where C is the normalization constant and I (k, p) are given by the following integrals
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In some cases it is computationally less demanding to treat Eq. (4) numerically for discretized values of r1
and r2, especially when a large number of terms is included in the Hylleras expansion. The above analytical
expressions of Eq. (4) are however useful when testing the accuracies of numerical integrations.

In order to gain insight into the effectiveness of the method described in previous section, we first determine
the occupation numbers of the ground state helium atom and assess their accuracy by comparing the linear
entropy with the data available in literature. Our numerical values obtained for L = 1 − ∑

nl(2l + 1)λ2
nl at

different R with different expansion lengths ω are listed in Table 2. The numerical stability was achieved by
increasing nm and lm until the results stay fixed to the quoted accuracy. It can be seen that already at R = 9
and ω = 10 the results start to match with the benchmark value for the linear entropy 0.0159156 ± 0.000001
established with relative small estimated uncertainty in Ref. [17], which proves the effectiveness of the method
we are using here for determining the occupation numbers. Tables 3 and 4 show how the values of the linear and
von Neumann entropies, respectively, converge as the cut-offs lm and nm are increased. Performing calculations
at larger R and ω, we have verified that the value of the vN entropy 0.0848999 faithfully reproduces the true
value with to at least 7 significant digits. It is worth stressing at this point that the convergence with increasing
lm appears monotonic (from above for the linear entropy and from below for the vN entropy).

In Table 5 our results for the entropies of the helium atom are compared with those obtained by other workers
in different ways. For example, in Refs. [15] and [18] the authors calculated the vN and linear entropies using
configuration interaction method with basis wave functions constructed by Slater-type orbitals (STO) and
by B-spline basis with one-electron momentum states up to l = 3 and up to l = 5, respectively. From the
comparison, we conclude that our value for the vN entropy is the best so far determined for the helium atom.
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Table 4 Same as in Table 3, but for the von Neumann entropy S

nm = 300 nm = 600 nm = 1,200

lm = 0 0.0428655 0.0428631 0.0428630
lm = 1 0.0814955 0.0814931 0.0814930
lm = 2 0.0842412 0.0842388 0.0842387
lm = 3 0.0847083 0.0847058 0.0847057
lm = 4 0.0848295 0.0848271 0.0848269
lm = 5 0.0848702 0.0848678 0.0848676
lm = 10 0.0849006 0.0848982 0.0848980
lm = 14 0.0849022 0.0848997 0.0848996
lm = 18 0.0849025 0.0849001 0.0848999
lm = 20 0.0849025 0.0849001 0.0848999

Table 5 Comparison of the vN and linear entropies calculated for the helium atom ground state with the results published in
literature

L S

This work 0.0159157 0.0848999
Dehesa et al. [14] 0.015914 ± 0.000044
Benetti et al. [15] 0.01606 0.0785
Lin et al. [16] 0.015943 ± 0.00004
Lin et al. [17] 0.0159156 ± 0.000001
Lin et al. [18] 0.015943 0.085022
Huang et al. [22] 0.0675

Table 6 Linear entropy (L) and the vN entropy (S) calculated for the ground state of helium-like ions compared with the best
literature results

Z = 1 Z = 2 Z = 3 Z = 4 Z = 5

L 0.106153 0.0159157 0.006539 0.003558 0.002235
[16] 0.015943 0.006549 0.003562 0.002237
[17] 0.106153 0.0159156
S 0.380012 0.0848999 0.039496 0.023146 0.015324
[18] 0.085022

We also computed the entanglement entropies for the ground states of the two-electron atoms with different
values of Z . Our results for the linear entropy and the vN entropy are listed in the table 6, where a comparison
with the literature [16,17] is also made. It is worth stressing that in each case considered here, the stability of
the results up to at least six decimal places was achieved already at lm = 1, similarly as for the helium atom.
Our value of the linear entropy of the hydrogen negative ion (Z = 1) coincides with the recently obtained
value 0.106153 of Ref. [17]. In all the remaining cases, our values are more accurate being slightly lower
than the results of the recent calculations [16]. The only accurate value reported in the literature is that for the
helium atom [18] which compares well with our result. The vN entropy for other values of Z was calculated
only in Ref. [23], where the convergence of correlated Gaussian basis sets has been tested. However, the results
for helium-like ions reported in supplementary material to this work differ widely depending on the type of
Gaussian basis used. Despite of using large basis sets, the results for the linear and vN entropies of helium-like
ions obtained in Ref. [23] are of low accuracy and were presented only graphically in the article. We would
like to stress that using the Hylleraas basis set (9) provides much better convergence properties, which enabled
us to determine the vN entropy to 6 digits accuracy.

The accurate results allow us to study the relation between the linear entropy and the vN entropy of the
RDM for the helium-like ions as a function of Z . This is an important issue since the linear entropy is frequently
used to measure entanglement in the system. The linear entropy is much easier to calculate than the vN entropy
since it is directly calculable from the integral representation and does not require diagonalization of the RDM.

Comparing the dependence on Z of the linear and vN entropies, we noted that from Z = 2 to Z = 5 they
are almost linearly related. This is demonstrated in Fig. 1, where the vN entropy is shown together with the
rescaled linear entropy 6.856L , where the factor 6.856 is obtained as the proportionality constant between
S and L at Z = 5. The departure from the linear realtionship occurs in the vicinity of Z = 1. This may be
caused by the proximity to the critical point Zc below which there are no bound states in the system. It has
been shown in Ref. [25] that the ionization point at which the helium-like system has a bound state with zero
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Fig. 1 Comparison of the vN entropy (full line) and the rescaled linear entropy 6.856L (dashed line) as functions of Z

binding energy is at Zc ≈ 0.911. Our calculation show that in the vicinity of the critical point, where the
system is highly correlated, the behavior of the linear and vN entropies is different.

Our results may be compared with the discussion of entanglement in the spherical helium-like model in
Ref. [26]. The spherical model is an approximation to the atom obtained by replacing the Coulombic repulsion
between the electrons by its spherical average. The approximate model has been shown to exhibit a similar
near-threshold behavior as the two-electron atom [27]. In Ref. [26], the scaling properties of the von Neumann
entropy have been studied for the ground state of the spherical helium-like model and its singular behavior
was demonstrated at Zsph

c ≈ 0.949. This value appears really close to the critical point of the helium-like atom
(Zc ≈ 0.911).

4 Conclusions

In conclusion, we have performed accurate calculations of the linear and vN entropy of the ground states
of the helium atom and helium-like ions, basing on the Schmidt decomposition of the two-particle spatial
wavefunctions. The accurate wvefunctions were obtained, employing expansions in terms of original Hylleraas-
type basis functions. Using a discretization technique, we determined the natural occupation numbers λnl up
to very large l and n for a series of values of the nuclear charge from Z = 1 to Z = 5, which enabled
high-precision determination of the corresponding entropies. In particular, the vN entropies of the helium-like
ions have been calculated for the first time and that of the helium atom has been determined with much better
accuracy than earlier calculations. Furthermore, our results revealed that relationship between the vN and
linear entropies is almost linear for Z ≥ 2. However with Z decreasing to the critical value, the increase of
the vN entropy gets much faster than that of the linear entropy. This may give a warning that using the linear
entropy instead of the vN entropy to measure entanglement not always is justified.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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4. Kościk, P. Okopińska: Correlation effects in the Moshinsky model. Few-Body Syst. 54, 1637 (2013)



Entanglement Entropies in the Ground States of Helium-Like Atoms

5. Manzano, D., et al.: Quantum entanglement in two-electron atomic models. J. Phys. A Math. Theor. 43, 275301 (2010)
6. Coe, J., Sudbery, A., D’Amico, I.: Entanglement and density-functional theory: testing approximations on Hooke’s

atom. Phys. Rev. B 77, 205122 (2008)
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