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Abstract. The optimized expansion is applied to the quantum mechanical evolution
amplitude, providing approximations to the density matrix and to the particle density.
For the anharmonic oscillator and for the electron in the hydrogen atom the first order
approximations to particle density agree well with the exact results.

The optimized expansion (OE) has been formulated as a method to generate non-
perturbative approximations for the effective action in quantum field theory [1].
The method is equivalent to a systematic resummation of the perturbative series
and gives the Hartree-Fock-Bogolubov approximation in the leading order. Local
properties of a quantum mechanical system will be studied applying the OE to the
evolution amplitude [2]. The imaginary time formalism is used in order to discuss
quantum statistical applications. Given the Euclidean Lagrangian of a particle

L[x]=
ẋ2

2
+V (x), (1)

the imaginary time evolution amplitude can be represented as a path integral

(xb,β|xa, 0)=eW (xb,xa,β) =
∫ x(β)=xb

x(0)=xa

Dxe−
∫ β

0
L[x]dt (2)

over all functions which begin at x(0) = xa and end at x(β) = xb. The evolution
amplitude enables one to obtain the canonical ensemble partition function

Zβ =
∫

dxa(xa, β|xa, 0), (3)

the normalized density matrix

ρ(xb, xa, β) = Z−1
β (xb, 0|(xa, β). (4)

and the particle density ρ(xa, β) = ρ(xa, xa, β).
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The OE is generated by modifying the classical Lagrangian to the form

L[x]= Lω + εVint =
ẋ2

2
+

ωx2

2
+ ε

(
V (x)− ωx2

2

)
, (5)

where the harmonic oscillator with an arbitrary frequency is chosen as the unper-
turbed system, and calculating the quantities of interest in powers of ε. The series
for W (xb,xa,β) is given by the cumulant expansion

W (xb,xa,β) = W0(xb,xa,β, ω)− ε < Vint(x) >ω

+
ε

2
(< V 2

int(x) >ω − < Vint(x) >ω< Vint(x) >ω)− ... (6)

where

W0(xb, xa, β, ω) =
1

2
ln

(
ω

2π sinh ωβ

)
− ω [(x2

a + x2
b) cosh ωβ − 2xaxb]

2 sinh ωβ
(7)

and the expectation values are calculated for the unperturbed Lagrangian

< ... >ω=
∫ x(β)=xb

x(0)=xa

Dx...e−
∫ β

0
Lω [x]dt. (8)

The N -th order approximant, W (N)(xb, xa, β, ω), is obtained by truncating the
series (6) after the N -th term and setting ε = 1, since only in this case does the
modified action agree with the classical one. The exact result does not depend
on arbitrary frequency, hence in each order calculation ω is chosen to make the
approximant as insensitive as possible to small variation of ω, by requiring

δW (N)

δω
= 0. (9)

This determines the optimal value of ω as a function of β, xa and xb, which changes
from order to order, improving the convergence of the approximation scheme.

The path integrals for the expectation values in W (N) (6) can be represented in
terms of ordinary Gaussian integrals which can be calculated numerically [3]. In
the case of a particle moving in an anharmonic potential, V (x) = λxn, the Gaussian
integrals can be easily performed, resulting in an analytic expression for W (N). For
the Duffing’s oscillator (n = 4) the first order approximant is given by

W (1)(xa, xb, β) = W0(xa, xb, β, ω)− m2 − ω2

2

∫ β

0
[L2(τ) + K(τ)]dτ

−λ
∫ β

0
[L4(τ) + 6L2(τ)K(τ)− 3K2(τ)]dτ (10)

where



L(τ) =
xa sinh ωτ + xb sinh ω(β − τ)

sinh ωβ
and K(τ) =

sinh ωτ sinh ω(β − τ)

ω sinh ωβ
(11)

and the optimization condition (9) reduces to

(m2 − ω2)

2

∂

∂ω2

∫ T

0
[L2(τ) + K(τ)]dτ

+ λ
∂

∂ω2

∫ T

0
[L4(τ) + 6L2(τ)K(τ)− 3K2(τ)]dτ = 0. (12)

The results for particle density, calculated in the first order of the OE for the
anharmonic oscillator [2] show a good agreement with the exact ones obtained by
numerical integration of Schrödinger equation and approach the exact results in the
limit of high temperature. The approximation to the free energy, Fβ = lnZβ, is also
in agreement with the numerical result in the whole range of temperatures. The
agreement worsens with increasing anharmonicity of the oscillator, but even in the
double well case the approximation is satisfactory provided the wells are not too
deep. Higher order calculation in the OE improve the approximation in a systematic
way. Moreover the accuracy of the approximation in the double well case can be
significantly improved by introducing an additional parameter ξ which describes

the shift from the origin of the harmonic potential ω(x−ξ)2

2
in the unperturbed

system [3].
The systems with more than one degree of freedom can be handled by a

similar approach using an anisotropic harmonic oscillator with the potential
1
2

∑∞
i,j=1 xiωijxj as the unperturbed system in the OE. In the simplest case of a par-

ticle in a radially-symmetric potential the formulas for expectation values have been
obtained [3]. The first order approximation to the electron density in a Coulomb
potential has been shown to agree with the exact results [3]. The application of
the OE for calculating the density matrix of realistic systems will be interesting to
study.

One has to note that the real time evolution amplitude can be calculated in a
similar way in the OE, and the method can be used for approximate description of
wave packet dynamics.
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