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Abstract A one-dimensional system of two trapped bosons which interact through a contact potential is stud-
ied using the optimized configuration interaction method. The rapid convergence of the method is demonstrated
for trapping potentials of convex and non-convex shapes. The energy spectra, as well as natural orbitals and
their occupation numbers are determined in function of the inter-boson interaction strength. Entanglement
characteristics are discussed in dependence on the shape of the confining potential.

1 Introduction

Entanglement as a measure of quantum correlations is investigated in the hope of better understanding the
structure of strongly-coupled many-body systems. Recently there is a growing interest in studying few-
particle trapped systems, since they became accessible in experiments with ultracold gases in optical lat-
tices and microtraps. The interatomic interaction can be there considered as a contact one. By choosing the
transverse confinement much stronger than the longitudinal one, the quasi-one-dimensional systems with an
effective interaction g1Dδ(x2 − x1) of an adjustable strength g1D may be experimentally realized [1]. In the
Tonks–Girardeau (TG) limit of g1D → ∞ the system is solvable for arbitrary trapping potential [2]. Theoretical
consideration of such a system evolution from weak to strong interactions is thus of interest.

We discuss entanglement properties for a system of two bosons interacting through a contact potential and
subject to a confining potential V (x). The dimensionless Schrödinger equation takes a form

Hφ(x1, x2) = Eφ(x1, x2), (1)

where the Hamiltonian reads

H = −1

2

∂2

∂x2
1

− 1

2

∂2

∂x2
2

+ V (x1)+ V (x2)+ g1Dδ(x2 − x1). (2)

Since the two-boson function is symmetric and may be chosen real, there exists an orthonormal real basis {vl}
such that

φ(x1, x2) =
∑

l

klvl(x1)vl(x2), (3)
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where the coefficients kl are real and
∑

l k2
l = 1. Therefore

∞∫

−∞
φ(x, x ′)vl(x

′)dx ′ = klvl(x), (4)

which means that vl are eigenvectors of the two-particle function. It may be shown that vl are also eigenvec-
tors of the density matrix, known as natural orbitals. Density matrix decomposition is given by ρ(x, x

′
) =∑

λlvl(x)vl(x
′
), where the occupancies λl = k2

l . The number of nonzero coefficients kl and the distribution
of their values characterize the degree of entanglement.

2 Optimized Configuration Interaction Method

The configuration interaction method (CI) consists in choosing the orthogonal basis set in the Rayleigh–Ritz
(RR) procedure so as to ensure proper symmetry under exchange of particles [3]. For the two-boson system,
the CI expansion reads

φ(x1, x2) =
∑

ai jψi j (x1, x2), (5)

where 〈x1, x2|i j〉 = ψi j (x1, x2)=bi j [ϕi (x1)ϕ j (x2)+ ϕ j (x1)ϕi (x2)] with bi j =1/2 for i = j and bi j = 1/
√

2
for i �= j . Exact diagonalization of the infinite Hamiltonian matrix Hnmi j = 〈nm|H |i j〉 determines the whole
spectrum of the system. Truncated matrices [H ]N×N allow determination of successive approximations to the
larger and larger number of states by increasing the order N . We use the one-particle basis of the harmonic
oscillator eigenfunctions

ϕΩi (x) =
( √

Ω√
π2i i !

) 1
2

Hi (
√
Ωx) exp

[−Ωx2/2
]
. (6)

Following the optimized RR scheme [4], we adjust the value of the frequency Ω so as to make stationary the
approximate sum of N bound-state energies, by requiring

δT r [H ]N×N

δΩ
= 0. (7)

Such a way of proceeding has been shown to improve strongly the convergence of the RR method [4,5]. The
N th order calculation provides approximations to many eigenstates, which enables a direct determination of
natural orbitals by representing them in the same basis (6) as v(x) = ∑

pnϕ
Ω
n (x). This turns the eigenequation

(4) into an algebraic problem
∑

(Amn − knδmn)pn = 0,

Amn =
∫
ψΩm (x1)φ(x1, x2)ψ

Ω
n (x1)dx1dx2 =

{
ann for m = n

2−1/2amn for m �= n

(8)

and anm are determined from diagonalization of [H ]N×N . By diagonalization of the matrix [A]N×N , the
approximate coefficients kn may be determined. Due to the fact that

∑
A2

nm = 1, their numerical values
satisfy

∑
k2

n = 1.

3 Results

In the case of harmonic confinement V (x) = mx2/2 and the contact interaction, the two-particle wave func-
tion may be analytically expressed [6]. This allows determination of the occupancies λi = k2

i by discretizing
(4). The two largest occupancies for the ground state are shown in Fig. 1 in function of g1D . The state is
non-entangled (λ0 = 1) only if the bosons do not interact. The weakly entangled “condensed” state with only
one orbital significantly occupied is realized at very weak interactions, g1D � 0.1. With increasing g1D , the



Two-Boson Correlations in Various One-Dimensional Traps 225

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

Fig. 1 The occupancies λ0 and λ1 for a harmonically confined two-boson system in function of g1D , their TG limits are marked
by horizontal lines

(a)

(c) (d)

(b)

Fig. 2 Double-well potential (upper left), the occupancies λ0 and λ1 in function of g1D (lower left) and two-boson densities
(right) for (a) g1D = 0, (b) g1D = 2.5 · 10−8, (c) g1D = 5 · 10−8, (d) g1D = 10−6

entanglement grows, which shows up in the increase of λ1 at the cost of λ0. The occupancies monotonically
approach their TG limits λT G

0 ≈ 0.7745 and λT G
1 ≈ 0.1765.

Entanglement properties in the case of multi-well potentials are markedly different. Using the optimized
RR method, we calculated the natural orbital occupancies of ground states in double-well potential V2well(x) =

2
27a (1 − ax2)2 and triple-well potential V3well(x) = 1

2 x2 − ax4 + a2

2 x6. The potentials have minima of the
same depth and the maxima of the same height, controlled by the parameter a. The results for a = 0.025
are plotted in Figs. 2 and 3, where the upper left presents the shapes of the potentials, and the lower left, the
two largest occupancies λ0 and λ1 in function of g1D . For g1D = 0, the ground state is non-entangled, as
λ0 = 1. With increasing interactions, λ0 decreases and λ1 grows, monotonically approaching the TG limit of
non-entangled “fragmented” state, λT G

0 = λT G
1 = 0.5. The critical value gcr

1D , above which λ0 ≈ λ1, is much
larger for the triple-well potential than for the double-well one. The dependence of the two-boson density on
g1D for the double-well potential is shown on the right of Fig. 2. For noninteracting bosons, the probability
of both being in different wells is the same as being in the same well. With increasing g1D , the probability of
finding the bosons in the same well quickly decreases and above gcr

1D the state is almost fragmented. In the
triple-well case (right of Fig. 3) the particles live in the middle well, only above gcr

1D the probability of finding
a particle in an external well becomes considerable. In the TG limit of non-entangled “fragmented” state, one
particle is localized in the middle and the other in one of external wells.



226 A. Okopińska, P. Kościk
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Fig. 3 Same as Fig.2 but for the triple-well potential. The two-boson densities (right) for (a) g1D = 1, (b) g1D = 1.97,
(c) g1D = 1.985, (d) g1D = 2.05

4 Conclusion

The optimized CI method proves very effective in determining the spectrum and the natural orbitals of the
two-particle confined systems.
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