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Entanglement properties of the two-electron quasi-one
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Abstract We analyse the entanglement characteristics of the quasi one-dimensional

quantum dot containing two Coulombically interacting electrons in an inverted Gaus-

sian potential. The linear entropy of the lowest energy states is calculated in the whole

range of the effective interaction strength g for different parameters of the longitudi-

nal potential and the lateral radius of the quantum dot. We employ the configuration

interaction method with complex-coordinate rotation, since the considered states be-

come autoionizing resonances at the interaction strenght above the critical value gth.

We study the dependence of the linear entropy on the parameters of the quantum

dot and discuss how the stability properties of the system are characterized by the

entanglement between the electrons.
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1 Introduction

In recent years, the application of quantum information tools has contributed new

insights into the physics of many-body systems [1; 2]. Entanglement provides interesting

characteristics of highly correlated states, so that’s why the entropies started to be used

to analyze quantum phase transitions with much effort focused on spin systems [1; 3; 4].

Few-body systems such as semiconductor quantum dots [5] can be also investigated

from quantum information perspective. It is a pleasant feature of quantum dots that

their geometry, the number of constituents and the interactions between them can

be experimentally controlled. This gave an impetus for studying theoretically two-

body systems subjected to external potentials and discussing their characteristics in

dependence on varying parameters. The autoionization problem has been discussed for

two-electron quantum dots of various geometries [6; 7; 8; 9; 10; 11]. Application of

quantum information tools to stability studies was discussed for spherically symmetric
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two-particle systems in Refs. [12; 13; 14; 15]. The critical behavior of entanglement

near the ionization point has been observed.

Here, the two-particle quasi-one dimensional quantum dots will be analysed from

quantum information perspective. Such simple systems, that can be realized in semi-

conductor quantum wires [16] or carbon nanotubes [17], are particularly important as

possible building blocks of quantum information processors. We consider a system of

two Coulombically interacting particles that are strongly confined laterally and weakly

confined by the longitudinal Gaussian potential which supports both bound and con-

tinuum stationary states. The system will be modelled by a quasi-one-dimensional

Hamiltonian with the parameters describing the shape of the potential and the inter-

particle interaction strength. The energies and widths of autoionizing resonances of the

model have been discussed by us previously [11]. Here, we will study how the entropic

entanglement characteristics depend on the details of the confining potential and the

interaction strength, paying particular attention to the values in the vicinity of the

stability limit.

2 The model

We consider a quasi-one-dimensional Hamiltonian

Ĥ =

2∑
i=1

[
−1

2

∂2

∂x2i
− V0e−x

2
i

]
+ V δ(|x1 − x2|), (1)

where the effective interaction potential is taken in the truncated Coulomb form

V δ(|x1 − x2|) =
g√

(x1 − x2)2 + δ
. (2)

The model can be regarded as describing a two-electron system in an axially symmetric

anisotropic trap, where the lateral confinement is much stronger than the longitudinal

one [18]. The parameter g is the strength of the effective interaction and δ is related

to the lateral dimension of the confinement. The limit of δ → 0 corresponds to the

strictly one-dimensional system. The longitudinal confinement in the considered system

(1) is taken in the form of an attractive Gaussian potential of the depth V0, which is

commonly used to model quantum dots [19].

The two-particle Hamiltonian (1) spectrum is continuous above the threshold en-

ergy ε
(2)
th = ε(1), where ε(1) is the one-particle energy in the Gaussian well. The bound-

states are associated with the solutions of the Schrö dinger equation under vanishing

boundary conditions, the eigenenergies of which are real and less than ε
(2)
th . The au-

toionizing resonances correspond to the discrete solutions that satisfy outgoing bound-

ary conditions. The resonance eigenvalues are complex numbers, E = ε − iΓ2 , which

determine the binding energy ε and the inverse of the resonance lifetime Γ .

3 The method

To determine both the bound and resonant states, we apply the configuration interac-

tion (CI) expansion

Ψs,t(x1, x2) =
∑
i,j

aijψ
±
ij(x1, x2) (3)
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where

ψ±ij(x1, x2) = cij
(
φi(x1)φj(x2)± φj(x1)φi(x2)

)
, cij =

{ 1√
2
i 6= j

1
2 i = j

, (4)

where (+) and (−) correspond to the singlet (s) and triplet (t) states, respectively. The

single particle orbitals are taken as the harmonic oscillator eigenfunctions

φi(x) =

(
1√
π2ii!

)1/2

Hi(x)e−
x2

2 . (5)

The CI method is generalised to resonant states by using the complex scaling

transformation U(θ) : x 7→ xeIθ. The spectrum of the complex-rotated Hamiltonian

Ĥθ = U(θ)ĤU−1(θ) is described by the Balslev-Combes theorem [20], which states that

the real bound-state eigenvalues, the complex resonance eigenvalues and the thresholds

are the same as those of the original Hamiltonian, but the eigenvalues of the continuous

spectrum are rotated about the thresholds by an angle 2θ into the lower energy half-

plane, exposing complex resonance eigenvalues. Although this theorem is proven only

for dilatation analytic potentials [20; 21] (i.e. the functions that can be analytically

continued into the complex plane for any value of x), the complex scaled CI method is

successfully applied for potentials that do not have this property [22; 23; 24; 25]. It has

been argued [26] that such an approach can be viewed as finite matrix approximation

to the mathematically precise exterior complex scaling [27]. In Ref. [11], we applied

thus complex scaling to the model system (1), where the soft Coulombic potential (2)

is non dilatation analytic. The eigenstates of the system were determined through

diagonalization of the truncated Hamiltonian matrix [H]ηM×M , the elements of which

are obtained as

Hη
nmij =

(
ψnm(x1η, x2η)|Ĥ|ψij(x1η, x2η)

)
. (6)

Note that the c-scalar product (f |g) =
∫∞
−∞ f(x)g(x)dx is to be used to calculate the

Hamiltonian matrix elements [21]. The matrix elements are analytical functions of η

and therefore we can analytically continue them to the complex plane by substituting

η = αe−iθ as first proposed by Moiseyev and Corcoran [23]. The optimal value of the

parameter η is fixed through the stabilization procedure [7] by requiring the eigenvalue

of the considered state Eηk to be stationary in the complex space

dEηk
dη

∣∣∣
η=ηopt

= 0. (7)

4 The linear entropy

The correlations in many-body quantum systems can be naturally described by particle

entanglement [1; 2]. Bipartite entanglement in pure states is generally quantified by

measures such as the linear entropy or the von Neumann entropy. Both entropies

are considered suitable to analyze properties of the systems in the neighborhoods of

quantum critical points. We have checked that the dependence of the linear and von

Neumann entropy on the parameters of the system (1) is very similar; therefore, in the

following we discuss only the linear entropy.
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The entanglement entropies are defined from the spectrum of the one-particle re-

duced density matrix [28]. In the case of two-particle bound-states with the real

wave-function Ψ(x1, x2) the one-particle reduced density matrix reads

ρ(x1, x
′

1) =

∫
Ψ(x1, x2)Ψ(x

′

1, x2)dx2. (8)

The linear entropy is defined as

L = 1− Tr[ρ2]. (9)

In the resonant case the left and right wave-function ΨθL,R(x1, x2), determined by the

complex scaling method, satisfy the following equations

HθΨθR(x1, x2) = EθΨθR(x1, x2) , (Hθ)TΨθL(x1, x2) = EθΨθL(x1, x2), (10)

and the one-particle reduced density matrix is defined by

ρθ(x1, x
′

1) =

∫
ΨθL(x1, x2)ΨθR(x

′

1, x2)dx2. (11)

The natural orbital occupation numbers λθi are complex numbers that are determined

by the Schmidt decomposition

ρθ(x1, x
′

1) =
∑
i=0

λθi u
θ
i (x1)uθi (x

′

1), (12)

where
∑
i=0 λ

θ
i = 1. The linear entropy can be calculated as

Lθ = 1− Tr[(ρθ)2] = 1−
∑
i

(λθi )
2 (13)

For θ = 0, Ψθ=0
L = Ψθ=0

R , and the one-particle reduced density matrix is real and the

corresponding natural orbital occupancies are real numbers. In this case we recover the

well known definition of linear entropy (9), which is real-valued.

Using the wave function of the system (1) determined by the CI method, we solved

the integral equation ∫
ρθ(x1, x

′

1)uθi (x
′

1)dx
′

1 = λθi u
θ
i (x1) (14)

through discretization technique. The so determined occupation numbers λi were used

to calculate the entanglement entropies. It should be noted that the reduced density

matrices (11) are defined for square integrable wave functions ΨθL,R(x1, x2). To obtain

the corresponding operator for resonance wave functions, it is necessary to use inverse

coordinate transformation U−1(θ) : x 7→ xe−Iθ. However, the transformation does not

change the occupation numbers λθi in the equation (12). Thus, the linear entropy can

be directly obtained from (13) and is complex-valued. As suggested in [15], the real

part of complex entanglement entropy (13) can by identified as the entropy of resonant

states and the imaginary part gives the uncertainty of measuring it.
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5 Results

The energy spectrum of the two-particle Hamiltonian (1) has been discussed in Ref.

[11]. The calculations were performed with the number of basis functions M = 342

in the singlet case and M=324 in the triplet case, which proved sufficient to obtain

convergent results. In Sect.5.1, we show the plots illustrating how the energies of the

lowest states depends on the depth of the longitudinal potential V0, and the interac-

tion strength g. In Sect. 5.2 we discuss the entanglement properties of the system in

dependence on the parameters of the system.

5.1 Energy

The energies ε and resonance widths Γ of the lowest singlet and triplet state of the

system (1) are presented in Fig. 1 at fixed lateral confinement with the related param-

eter δ = 0.01 as functions of the interaction strength g at different depths V0 of the

trapping potential.
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Fig. 1 The energies (left) and widths (right) of the singlet (solid curve) and triplet (dashed
curve) states as functions of the interaction strength g for different depths V0 of the trap. The
black points represent the thresholds gth which separate the bound states from resonances.

We observe that the dependence on the interaction strength is monotonous and

smooth. The only sign of critical behaviour is the appearance of the imaginary part

above critical value gth. The depth of the trap has an important effect on the critical

value of the interaction strength gth at which the bound state is transformed into a

resonance, namely the larger is the value of V0, the larger is gth.

5.2 Entanglement entropy

The linear entropy Lθ obtained from the complex scaled formula (13) becomes complex-

valued if the interaction strength g > gth. In Fig.2 and Fig.3 the results for the real

part of entropy for the lowest singlet and triplet states are presented as functions

of the interaction strength g. We observe that the entropy increases with increasing

interaction strength. In the vicinity of the threshold values of the interaction strength

gth, which are marked by black dots, the character of the increase of linear entropies
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Fig. 2 The real parts of the linear entropy for the lowest singlet (left) and triplet (right) states
of the Hamiltonian (1) with V0 = 10 for three different values of δ. The black points represent
the thresholds gth which separate the bound states from resonances.

changes. About g = gth, the entropy curves have inflection points, it is they change

from being concave to convex functions.

In Fig. 2 the real parts of linear entropy are presented as functions of the interaction

strength g at three different lateral confinement range δ for a trap of fixed depth V0 =

10. As expected the difference between entropy obtained with different δ parameter

tend to vanish in the limit of g → ∞ for both singlet and triplet state. At strong

interactions, it is interesting to observe that the real parts of complex linear entropies

in the resonant singlet states exceed the value of entropy of the ionized state which is

equal Lion = 1
2 , as the state is described by the symmetrized product of one-electron

QD and a free electron wave functions.
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Fig. 3 The real parts of the linear entropy for the lowest singlet (left) and triplet (right)
states of the Hamiltonian (1) with δ = 0.01 for three different values of V0. The black points
represent the thresholds gth which separate the bound states from resonances.

Fig. 3, shows the real parts of linear entropy of the singlet and triplet states as

functions of the interaction strenght g at three different depths V0 of the trapping

potential. We observe that the real part of complex linear entropy of both the singlet

and triplet states depends on the depth of the longitudinal trap V0 in a similar way.
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6 Conclusion

Using the reduced density matrix obtained by the complex scaling method (11) we cal-

culated the linear entropy of bound and resonant states of the Gaussian QD with the

quasi-one dimensional Hamiltonian (1). In both cases the entropy curves are monotonously

increasing functions of g and do not show discontinuities in the vicinity of gth. How-

ever, as opposed to the very smooth behavior of energy curves, the character of the

increase of linear entropies changes around gth, namely the functions change from being

concave to convex. The linear entropy of the quasi-one dimensional two-electron quan-

tum dot depends strongly on the shape of the confining potential and the interaction

strength g. The effect of the interaction on entanglement between electrons is more

pronounced in the singlet case. Also the lateral dimension of the QD, described by the

δ parameter, influences the entanglement entropy more strongly in the singlet states.

The stronger influence of the interaction on the entropy can be attributed to the fact

that at g = 0 the lowest singlet state is occupied by electrons in the lowest one-particle

states.Whereas, the decrease with increasing depth of the longitudinal trap

V0 appears similar for the singlet and triplet entropies.
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