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Abstract. We study systems of a few charged bosons contained within a strongly anisotropic harmonic trap.
A detailed examination of the ground-state correlation properties of two-, three-, and four-particle systems
is carried out within the framework of the single-mode approximation of the transverse components. The
linear correlation entropy of the quasi-1D systems is discussed in dependence on the confinement anisotropy
and compared with a strictly 1D limit. Only at weak interaction the correlation properties depend strongly
on the anisotropy parameter.

1 Introduction

Systems of few interacting particles confined by an exter-
nal potential are of increasing interest in view of their ap-
plication to model various nanostructures fabricated in an
artificial way. The Schrödinger equation for harmonically
trapped particles which interact through a Coulomb po-
tential can be used to simulate different physical systems,
such as semiconductor quantum dots [1] or electromagnet-
ically trapped ions [2]. Besides of fermionic systems, also
the bosonic ones have been thus considered in various the-
oretical contexts both in the 3D [3–5] and 2D [6] case. The
properties of quasi-1D systems are, however, rather rarely
studied, except for the models of bosons with a contact
potential [7–13]. In this work, we discuss the case of N
identically charged spinless bosons confined in a quasi-1D
trap. Such a trapping potential may be experimentally re-
alized using highly anisotropic harmonic traps where the
radial confinement is much tighter than the axial one.

We discuss the effects of both the number of particles
and the control parameters of the system on the correla-
tion properties. We consider various characteristics such as
single-particle reduced density matrix, single-particle den-
sity, and linear entropy. In particular, the influence of the
anisotropy on the correlations within a quasi-1D structure
is investigated.

Our paper is organized as follows. In Section 2 we
present the model and provide an analytical formula for
the effective interaction potential. Section 3 surveys the
quantities we use to characterize correlations in the sys-
tem. In Section 4 the limit of ε → ∞ is discussed. The
results are presented in Section 5 and a summary of our
conclusions is given in Section 6.
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2 Effective Hamiltonian

Consider a system of N Coulombically interacting parti-
cles trapped in a 3D axially-symmetric harmonic potential
with a Hamiltonian given by
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E �→ �ωxE, the Schrödinger equation takes the form

HΨ(r1, r2, . . . , rN ) = EΨ(r1, r2, . . . , rN ), (2)
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The dimensionless coupling g = γ
√

m
ωx�3 represents the

ratio of the Coulomb interaction to the longitudinal trap-
ping energy scale and the dimensionless parameter ε = ω⊥

ωx

measures the anisotropy of the trap. We focus our atten-
tion on the strong anisotropy case, ε � 1, when the sys-
tem becomes quasi-1D. In this case the particles may be
assumed to stay in the lowest energy state of the tranverse
Hamiltonian H⊥ = −�2

ρ

2 + 1
2ε

2ρ2 and the one-mode ap-
proximation is justified. The N−body wave function may
be taken in the form

Ψ(r1, r2, . . . , rN ) ∼= ψ(x1, x2, . . . , xN )ΠN
i=1ϕ(yi)ϕ(zi),

(4)
where ϕ(z) = ( ε

π )
1
4 e−

εz2
2 and ψ is assumed to be a real

function. After substituting (4) into (2), multiplying it
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Fig. 1. (Color online) Effective interaction potential (8) as a
function of x = x2−x1 for the anisotropy parameter ε = 30, 100
compared with the Coulomb potential x−1.

from the left by ϕ(y1)ϕ(z1) . . . ϕ(yN )ϕ(zN ) and integrat-
ing over y1, y2, . . . , yN , z1, z2, . . . , zN we arrive at

H1Dψ(x1, x2, . . . , xN ) = E1Dψ(x1, x2, . . . , xN ), (5)

where the quasi-1D Hamiltonian has a form

H1D =
N∑

i=1
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The effective interaction potential

U1D(x1, x2) =
∫

[ϕ(y1)ϕ(y2)ϕ(z1)ϕ(z2)]2

|r1 − r2| dy1dy2dz1dz2,

(7)
is calculated to be given by
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(8)
where erf(z) is the error function. In Figure 1 the effective
potential (8) is compared with the pure Coulomb potential
for different values of ε. We can notice that the larger is
the value of ε, the closer to the origin does the effective
potential begin to exhibit Coulomb behaviour.

We have tested the applicability of the single mode
approximation for the two-particle system (N = 2) by
comparing the ground-state energyE1D obtained from the
1D Hamiltonian (6) with the energy E determined from
the full 3D Hamiltonian (3). The relative errorΔE = |E−
E1D|/E as a function of ε is shown in Figure 2 for different
values of the coupling constant. One can conclude that
anisotropy ratios ε � 5 are sufficiently large for employing
the single mode approximation.

3 Correlation characteristics

A basic tool to investigate two-body correlations in
the system is the one-particle reduced density matrix
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Fig. 2. (Color online) Relative ground-state energy error
ΔE = |E − E1D|/E as a function of ε for N = 2 and g =
1, 5, 20.

(RDM) [14] for spinless particles defined as

ρ(r, r
′
) =

∫
. . .

∫
Ψ(r, r2, . . . , rN )

× Ψ(r
′
, r2, . . . , rN )d3r2 . . . d

3rN . (9)

In the one-mode approximation (4) the RDM takes the
form

ρ(r, r
′
) = ϕ(y)ϕ(y

′
)ϕ(z)ϕ(z

′
)ρ1D(x, x

′
), (10)

with the 1D effective RDM given by

ρ1D(x, x
′
) =

∫
. . .

∫
ψ(x, x2, . . . , xN )ψ(x

′
, x2, . . . , xN )

× dx2 . . . dxN . (11)

The effective RDM can be represented in the Schmidt form

ρ1D(x, x
′
) =

∞∑

l=0

λlvl(x)vl(x
′
), (12)

where {vl(x)} are the natural orbitals and their occupan-
cies {λl}. We will concentrate on discussing the linear en-
tropy

L = 1 −
∫ ∫

ρ1D(x, x′)2dx′dx. (13)

which can be expressed in terms of λl as L = 1 − ∑
l λ

2
l .

It gives indication of the spread of terms in the Schmidt
decomposition (12) and is one of the popular measures of
correlation [15–18].

4 Strictly 1D limit

In the strictly 1D limit of ε→ ∞, the interaction potential
of the considered system, g/|xi − xj |, diverges at xi = xj

for any finite g. This causes divergences at short distances
in calculating the energy of bosonic systems. Usually those
divergences are cured by performing calculation for an
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Fig. 3. Gray-scale plots of the effective RDM for systems of
N = 2, 3 and 4 particles with confinement anisotropy ε = 30
at various interaction strengths g.

anisotropic 3D system with finite ε and observing the lim-
iting behavior at ε→ ∞. However, as noticed recently [19],
the calculation may be performed directly for the 1D sys-
tem since its ground-state wavefunction can be related via
Bose-Fermi mapping to the lowest energy antisymmetric
N -particle wavefunction ψF as

ψ(x1, x2, .., xN ) = |ψF (x1, x2, .., xN )|. (14)

Therefore, the system of bosons gets fermionized and the
ultraviolet divergencies are cured in a natural way when
determining ψF by the standard configuration interaction
method.

5 Results and discussions

We shall consider the ground-state of many-body systems
with the number of particles N = 2, 3 and 4. In order
to reveal qualitatively the nature of correlations in the
quasi-1D limit, we first discuss the case of large anisotropy,
ε = 30. The ground-state N -particle wave function of the
Hamiltonian (6) is calculated with the quantum diffusion
algorithm [20] and used to determine ρ(x, x

′
) by numerical

integration of equation (11).
Grey-scale plots of ρ(x, x

′
) for the considered systems

are shown in Figure 3 at three values of the interaction
strength g. As one can see, the off-diagonal elements of
the RDM diminish with increasing g, which indicates a
loss of spatial coherence in the system. This is due to
the repulsive nature of the interaction encouraging lo-
calization of the particles, which tend to separate from

Fig. 4. Gray-scale plots of the effective RDM for systems of
N = 2, 3 and 4 particles with confinement anisotropy ε = ∞
at various interaction strengths g.

each other. A clear deviation from the circular struc-

ture ρ(x, x
′
) = π− 1

2 e−
(x2+x

′2
)

2 of the noninteracting case
(g = 0) is clearly observed already at g = 1. Interest-
ingly enough, the results of Figure 3 show that the onset
of crystallization shows up at g = 5, independently on the
number of particles.

The results at finite anisotropy ε = 30 may be com-
pared with those obtained in the strictly 1D limit that
are given in Figure 4. In this case we determined ψF ,
and thereby ψB , using the standard configuration interac-
tion method based on harmonically trapped single-particle
eigenfunctions ϕho

n . Comparing the results of Figure 3 with
the ones of Figure 4, one can notice that the anisotropy
parameter influences the behaviour of the RDM only in
the regime of small values of g. As a matter of fact, al-
ready at g = 5 the RDM calculated at ε = 30 reproduces
quite well the one calculated in the strictly 1D limit, re-
gardless of the number of particles. We observe that below
this value an increase in the anisotropy parameter has the
effect of an increase in the interparticles distances. Other-
wise stated, the onset of the Wigner crystalization in the
strictly 1D limit appears at value smaller than that in the
case of ε = 30. To make the above more clear, we present
in Figure 5 the single particle densities of the 3-particle
system, corresponding to the N = 3 results of Figures 3
and 4.

Next, we explore the effect of the anisotropy parameter
ε on the correlation properties of systems containing N =
2, 3 and 4 bosonic particles. In Figure 6 the ground-state
linear entropy L at different values of ε is compared with
the result obtained in the fermionized strictly 1D limit of
ε → ∞. The results are presented as a function of the
dimensionless parameter g.
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Fig. 5. (Color online) Single-particle density of N = 3 particles
confined with anisotropy ε = 30 (dashed curve) and ε = ∞ for
various interaction strengths g.

We see that in each considered case, the linear entropy
increases with g and above g ≈ 5 saturates at a constant
value that is insensitive to the anisotropy parameter ε.
This may be attributed to the fact that at large g the av-
erage distances between the particles are large enough so
that the effective interaction exhibits pure Coulomb be-
haviour. The values of g at which saturation takes place
seem to increase slightly with N . A look at Figure 3 allows
us to conclude that they coincide roughly with the critical
values of crystallization. As can be inferred from Figure 6,
the linear entropy L increases with the number of parti-
cles in the system, with the increase getting smaller for
larger N . The effect becomes less pronounced at weaker
interactions and disappears in the limit of g → 0, when
L→ 0, regardless of the number of particles. At small val-
ues of g, the entropy L depends strongly on the anisotropy,
being larger at larger ε. Again, this can be qualitatively
understood by referring to the distances of the particles,
namely they are small at small values of g and are thus
in the regime where the effective interaction potential (8)
strongly depends on ε.

The entropy in the strictly 1D limit of ε → ∞ has
been calculated by taking into account the Bose-Fermi
mapping (14). In the limit of g → 0, the wavefunction ψF

reduces to a single Slater determinant and (14) takes the
form

ψ(x1, x2, . . . , xN ) =
1√
N !

∣∣∣detN−1,N
n=0,j=1(ϕ

ho
n (xj))

∣∣∣ . (15)

The values of L1D are calculated to be about 0.36, 0.51
and 0.6 for N = 2, 3 and 4, respectively. The occurrence of
fermionization for g 
= 0 results in the discontinuity of the
linear entropy in the point g = 0. Importantly, we observe
that the smaller is g and/or N the larger is the anisotropy
parameter at which the linear entropy of the quasi-1D
system reaches the fermionic behaviour of the strictly 1D
gas (ε→ ∞).

Fig. 6. (Color online) Linear entropy in the ground-state of
the system of (6) for N = 2, 3 and 4 particles as a function of
g. Full curve, ε = 5; dashed curve, ε = 30; dot-dashed curve,
ε = 100. The red line is the linear entropy in the strictly 1D
limit.

The asymptotic value of L1D at g → ∞ can be calcu-
lated analytically in the case of N = 2, using the harmonic
approximation which becomes exact in this limit [18]. The
calculation analogous to that performed by us in the 2D
case [18] gives

Lg→∞
1D = 1 −

√
−3

2
+
√

3 ≈ 0.518, (16)

which is in agreement with our numerical result. For N =
3 and N = 4 the values of Lg→∞

1D are found numerically
to be about 0.68 and 0.77, respectively. To fully reveal the
correlation effects in the strong interaction limit, it would
be desirable to obtain the full dependence of Lg→∞ on N .
This is a topic for future investigation.
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6 Summary

We investigated the ground-state correlation properties of
the systems composed of two, three, and four particles
in a strongly anisotropic harmonic trap. Within the one-
mode approximation, we studied the influence of both the
number of particles N and the anisotropy parameter ε
on the correlation properties of the systems in the whole
range of repulsive interaction strength g. As a general
trend we found that the linear entropy L increases with
increasing g. At small g (weak interaction and/or strong
confinement), the entropy of the considered systems de-
pends heavily on the anisotropy of the trap, being larger
at higher anisotropy. Linear entropy is the largest in the
limit of ε → ∞, when fermionization takes place for any
g 
= 0. At large g (strong interaction and/or weak confine-
ment), the entropy L saturates at a value that does not
depend on ε and is greater the larger is N . The value of
g at which saturation takes place hardly depends on the
number of particles, shifting only slightly towards larger
values with increasing N .

The practical realizations of the model discussed in our
work can be achieved experimentally in linear ion traps
where the confining forces in the longitidunal direction
are much softer than the radial confinement. In the case
of singly charged ions the parameter g = ke2

√
m/ωx�3,

where k is the Coulomb constant and m is the ion’s mass,
can be controlled by the axial trapping frequency ωx. In
current experiments the values of ωx are below 1 MHz,
which corresponds to the crystalline phase with microme-
ter distances between the ions [21] and a value of g larger
than 106. In this regime, the correlation depends very
weakly on anisotropy and the strictly one-dimensional ap-
proximation works well even at moderate values of ε.

We think a more extensive analysis of the effects of
anisotropy for a larger number of particles is desirable

to get a deeper insight into the properties of strongly cor-
related bosons with Coulomb interaction.
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