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Abstract

The information content of continuous quantum variables systems is usually studied using a

number of well known approximation methods. The approximations are made to obtain the spec-

trum, eigenfunctions or the reduced density matrices that are essential to calculate the entropy-like

quantities that quantify the information. Even in the sparse cases where the spectrum and eigen-

functions are exactly known the entanglement spectrum, i.e. the spectrum of the reduced density

matrices that characterize the problem, must be obtained in an approximate fashion. In this work,

we obtain analytically a finite representation of the reduced density matrices of the fundamental

state of the N-particle Calogero model for a discrete set of values of the interaction parameter. As

a consequence, the exact entanglement spectrum and von Neumann entropy is worked out.
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I. INTRODUCTION

During the last few years, there has been an increasing interest in the entanglement

or, more generally, the information content of quantum states of systems with continuous

quantum variables (CV) [1–4]. This ample category basically comprises, but is not exhausted

by, electrons in atomic or molecular systems and few particle model systems as the Moshinsky

model [5] and the Calogero model [6]. For an early example of the application of information

ideas to the internal continuous variables of an artificial atom see the work of Amovilli and

March [7].

In this context, the amount of attention dedicated to the Moshinsky and, to a lesser

extent, the Calogero models seems at odds with their importance or the consequences that

their study could have in understanding more realistic systems. A casual onlooker would

think so, but a more experienced one would remember the scarcity of exact results about

CV systems and think otherwise. After all, the study of entanglement in spin systems did

not reach its maturity until the exact formula to calculate the entanglement of formation

of an arbitrary state of two qubits was obtained by Wootters [8]. This formula, together

with the battery of many-body exactly solvable models is the cornerstone of the amazing

development of the studies of entanglement in systems with finite Hilbert spaces [9]. In

particular, the development of approximate methods has benefited from the accumulation

of benchmarks where they can be tested.

Incidentally, when the entanglement or information content of a quantum state is under

study, it is calculated using a plethora of entropy-like functions [10, 11]. Regrettably, the

use of one or other is often dictated by what it is feasible to calculate for a given system

and not by the requirements of some information task like it is mostly the case in spin sys-

tems, where the entanglement of formation, the distillable entanglement [12–14] and others

come to mind. In the same sense, the entanglement of formation of Gaussian states, that

are a genuine continuous variable system, can be determined [15]. Anyway, the use of the

von Neumann entropy and the Jozsa-Robb-Wootters sub-entropy [16] in CV systems is sup-

ported by rigorous arguments [17] rather than numerical evidence from particular systems.

More recently, Iemini and Vianna [18], have discussed how to compute the entanglement of

indistinguishable particles pure states, both bosons and fermions, using the von Neumann

entropy. On the other hand, in the work of Killoran et al [19] it is argued that any entangle-
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ment, even the one that appears amongst identical particles due to symmetrization can be

extracted and used for some task. All in all, the case for studying the von Neumann entropy

for systems of identical particles is stronger than ever.

The technical difficulties associated to the calculation of informational quantities in

atomic-like systems have been discussed numerous times and roughly speaking they can

be classified in two kinds. The first kind is related to the method employed to obtain the

(approximate) quantum state and the second kind is related to what informational quan-

tities can be effectively calculated from the quantum state, as has been said above. If the

state is obtained using a finite Hamiltonian approximation, like the ones that result from

the Hartree-Fock or the variational Ritz methods, there is no guarantee that it will be

manageable enough to obtain the reduced density matrices that are necessary to calculate

some entropy-like quantity, or that the approximate quantum state even resembles the ex-

act one or its entanglement content. From an historical point of view it is interesting to

note that this subject was the motivation that led Moshinsky to study the model that is

now called so after him. Nevertheless, there has been a lot of progress in the study of CV

systems from more measures to quantify the information, as the geometric entanglement

[20] or the relative von Neumann entropy [21], to understand how the entanglement behaves

when approximate solutions obtained with the Hartree-Fock method [22] or the Ritz method

[23–25] are analyzed, and the relationship between entanglement and energy in two-electron

systems [26].

Despite that the Moshinsky and Calogero models have exact solutions, allowing to obtain

some of the required quantities to study the information content of their quantum states,

most studies about both models are restricted to the so-called linear entropy, since it does not

require a detailed knowledge of the reduced density matrix spectrum, as is the case for the

von Neumann entropy. If the model considered has N particles, then the p-particle reduced

density matrix (p-RDM) can be obtained by tracing out N − p particles from the density

matrix of the whole system. Each of p-RDM can be used to obtain entropy-like quantities.

The p-RDM has been obtained analytically for the N-particle Moshinsky system at arbitrary

values of the interaction parameter [30]. In [31] the exact occupation numbers and the exact

expression for the von Neumann p-entropies have been derived and their dependence on

the interaction strength and the number of particles has been discussed. In this work we

obtain an exact finite analytical expression for the p-RDM for the N -particle one-dimensional
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Calogero model. We explicitly compute the cases for p = 1 and N up to 5 for the totally

symmetric (bosonic) ground state wave function. We analyze this case thoroughly, while

the analysis of a totally anti-symmetric (fermionic) ground state function is restricted to

the simplest case, i.e. two particles and their 1-RDM, since it proceeds similarly to the

symmetric one. As we will show, in each case the entanglement spectrum [27, 28] is given by

a finite number of eigenvalues if the coefficient that characterizes the interaction between the

particles assumes certain particular values. We analyze the relationship between our results

with those found for the Crandall and Hooke atoms for N = 2 [29] and for the N-particle

Moshinsky model [31–33].

II. THE MODEL

We adopt for the N -particle Calogero Hamiltonian [6] the expression of Sutherland [34]

H =

N
∑

i=1

h(i) + ν(ν − 1)
∑

i<j

1

(xi − xj)2
, (1)

where

h(i) =
1

2
p2i +

1

2
ω2x2i , (2)

pi is the momentum operator and the masses are equal to one. In this reference the author

also gave the ground-state energy and the corresponding totally symmetric ground-state

wave function,

E = ((N − 1)ν + 1)
N

2
ω ; Ψ(x1, . . . , xN) = CN,ν ∆ν

N
∏

i=1

e−
1

2
ωx2

i , (3)

where ∆ν is the Jastrow factor

∆ν =
∏

i<j

|xi − xj |ν , (4)

and CN,ν is the normalization constant [35],

CN,ν =
2(N−1)Nν/4

πN/4
ω((N−1)ν+1)N/4

N
∏

j=1

√

Γ(1 + ν)

Γ(1 + jν)
. (5)
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Because the interaction potential of the Calogero model is a homogeneous function of

degree -2, as the kinetic energy, the rescaling x 7→
√

1
ω
x, E 7→ ωE maps the problem to an

ω-independent Schrödinger equations, in what follows we put ω = 1.

From the exact wave function for N particles, Ψ(x1, . . . , xN ), the p-RDM is constructed

as follows

ρ
(p)
N (x1, x2, . . . , xp; y1, y2, . . . , yp) =

∫

· · ·
∫

dxp+1dxp+2 . . . dxN × (6)

Ψ⋆(x1, x2, . . . , xp, xp+1, . . . , xN )Ψ(y1, y2, . . . , yp, xp+1, . . . , xN).

For ν = 2n; n = 1, . . . the absolute value in equation (4) can be ignored and the

only integrals needed to find p-RDM are Gaussian integrals with even powers in the

Jastrow factor. Moreover, the p-RDM equation( 6) is then a multinomial expression of

(x1, x2, . . . , xp; y1, y2, . . . , yp). The general expression for ρ
(p)
N is quite cumbersome to obtain

but it can be written elegantly as a finite sum of Hermite functions.

III. EXPANSION OF THE p-RDM IN HERMITE FUNCTIONS

In order to obtain a general expression for the ground-state wave function as an expansion

on the orthonormal Hermite functions

ψk(x) =
e−

1

2
x2

Hk(x)√
2kk!π1/2

, (7)

where Hk(x) are the Hermite polynomials, we use the expression of the Vandermonde De-

terminant [36],

N
∏

i<j

(xi − xj) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

x01 · · · xN−1
1

...
...

...

x0N · · · xN−1
N

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

2(N−1)N/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

H0(x1) · · · HN−1(x1)
...

...
...

H0(xN ) · · · HN−1(xN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

2(N−1)N/2

N−1
∑

i1,··· ,iN=0

εi1,··· ,iNHi1(x1) · · ·HiN (xN) , (8)

where εi1,··· ,iN is the completely antisymmetric tensor in the indexes 0, . . . , N − 1.

The ground-state wave function equations (3) and (4) for ν = 2n takes the form
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Ψ(N)
n (x1, . . . , xN ) =

CN,2n

2n(N−1)N
e−

1

2

∑N
i=0

x2
i

N−1
∑

i1,1,··· ,i1,N=0

. . .

N−1
∑

i2n,1,··· ,i2n,N=0

εi1,1,··· ,i1,N . . . εi2n,1,··· ,i2n,N

Hi1,1(x1) . . . Hi2n,1
(x1) . . . Hi1,N (xN ) . . . Hi2n,N

(xN ) .

(9)

The product of Hermite polynomials can be written as a sum of Hermite polynomials

with known coefficients A
(q)
k1,··· ,km , which are given in Ref.[37]

M
∏

m=1

Hkm(x) =

∑
m km
∑

q=0

A
(q)
k1,··· ,km

√

2qq!π1/2
Hq(x) , (10)

where

A
(q)
k1,··· ,km =

√

2qπ1/2

q!

∑

r1,··· ,rm

r1+···+rm≤[ q
2
]

(−1)
∑

i ri

∏

i ki! (
∑

i(ki − 2ri))!
∏

i ri!
∏

i(ki − 2ri)!
(

[ q
2
]−∑i ri

)

!

if q + k1 + · · ·+ km even ,

,

(11)

and A
(q)
k1,··· ,km = 0 if q + k1 + · · · + km odd. Then, inserting equations (7) and (10) into

equation (9) we obtain

Ψ(N)
n (x1, . . . , xN) =

CN,2n

2n(N−1)N

N−1
∑

i1,1,··· ,i1,N=0

. . .

N−1
∑

i2n,1,··· ,i2n,N=0

εi1,1,··· ,i1,N . . . εi2n,1,··· ,i2n,N

N
∏

k=1

∑2n
l=1 il,k
∑

qk=0

A
(qk)
i1,k,··· ,i2n,k

ψqk(xk) ,

(12)

equation (12) is the expansion of the ground-state wave function in the orthonormal Hermite

basis, which, in a compact way can be written as

Ψ(N)
n (x1, . . . , xN) =

2n(N−1)
∑

q1,··· ,qN=0

aq1,··· ,qN ψq1(x1) . . . ψqN (xN ) , (13)

where, from equation (12),
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aq1,··· ,qN =
CN,2n

2n(N−1)N

N−1
∑

i1,1,··· ,i1,N=0
∑

ini,1
≥q1,···

. . .

N−1
∑

i2n,1,··· ,i2n,N=0

··· ,
∑

ini,N
≥qN

εi1,1,··· ,i1,N . . . εi2n,1,··· ,i2n,N

N
∏

k=1

A
(qk)
i1,k,··· ,i2n,k

.

(14)

From equations (6), (13) and (14), the expression of the p−RDM takes the simple form

ρ
(p)
N (x1, . . . , xp; y1, . . . , yp) =

2n(N−1)
∑

q1,··· ,qN=0

2n(N−1)
∑

r1,··· ,rN=0

aq1,··· ,qN ar1,··· ,rN δqp+1,rp+1
· · · δqN ,rN

ψq1(x1) · · ·ψqp(xp)ψr1(y1) · · ·ψrp(yp)

(15)

=

2n(N−1)
∑

q1,··· ,qN=0

2n(N−1)
∑

r1,··· ,rp=0

aq1,··· ,qN ar1,··· ,rp,qp+1,qN

ψq1(x1) · · ·ψqp(xp)ψr1(y1) · · ·ψrp(yp) .

With this expression the p-RDM is a symmetric kernel given by a finite sum of terms

which are the product of the orthonormal functions ψq1(x1) · · ·ψqp(xp). Therefore [38], these

products are also the eigenfunctions of ρ
(p)
N , and its spectrum is given by the eigenvalues of

the (2n(N − 1) + 1)p × (2n(N − 1) + 1)p matrix

[ρ
(p)
N ]i,j =

2n(N−1)
∑

qp+1,··· ,qN=0

aq1,··· ,qN ar1,··· ,rp,qp+1,qN , (16)

where the indexes i, j are related to the indexes q, r by

i = 1 + q1 + (2n(N − 1) + 1) q2 + · · ·+ (2n(N − 1) + 1)p−1 qp

j = 1 + r1 + (2n(N − 1) + 1) r2 + · · ·+ (2n(N − 1) + 1)p−1 rp . (17)

Because the Hermite functions have a definite parity, the matrix elements of the p-RDM

equation(16) are zero for odd values of i+ j.

Once the eigenvalues λk of the matrix (16) are calculated, the von Neumann and linear

entropies of the p-RDM of the N-particle Calogero model with the interaction strength

ν(ν − 1) = 2n(2n− 1) can be obtained as
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FIG. 1. a) First (black line) and second (red line) eigenvalues of ρ
(1)
2 for N = 2 as a function of

1/ν. b) Third (black line) and fourth (red line) eigenvalues of ρ
(1)
2 for N = 2 as a function of 1/ν.

The asymptotic degenerated values are shown by a blue triangle

SN = −
(2n(N−1)+1)p

∑

k=1

λk log2(λk) ; LN = 1−
(2n(N−1)+1)p

∑

k=1

λ2k . (18)

IV. THE TWO-BOSON CALOGERO MODEL

For N = 2 and ν = 2n the ground-state wave function equation(3) takes the form

Ψ(2)
n (x1, x2) =

2n√
π

√

(2n)!

(4n)!
(x1 − x2)

2n e−
1

2
(x2

1+x2
2) . (19)

By virtue of equation(15), the 1-RDM can be written as a finite expansion in a bi-

orthogonal basis set,

ρ
(1)
2 (x; y) =

2n
∑

i,j=0

ρi,j ψi(x)ψj(y) . (20)

Once ρ
(1)
2 has been obtained we have to solve the eigenvalue problem

∫ ∞

−∞
ρ
(1)
2 (x1, x2)ϕi(x2) dx2 = λi ϕi(x1) . (21)

Note that the (2n + 1) × (2n + 1) 1-RDM is a real symmetric matrix with two blocks,

one (n+ 1)× (n+ 1) even block and one n× n odd block. For the case n = 1 ⇒ ν = 2 the
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matrices are 2×2 and 1×1 respectively, and its entries can be calculated analytically using

equations (10-17). The normalization constant is C2,2 = 1√
3π

, the non-zero coefficients for

the Hermite expansion equation (10) are

A
(0)
0,0 = π1/4 ; A

(0)
1,1 = 2π1/4 ; A

(1)
1,0 = A

(1)
0,1 =

√
2π1/4 ; A

(2)
1,1 =

√
8π1/4 , (22)

all the others are zero. Then, from equation (14), the non-zero coefficients of the wave-

function expansion equation(13) are

a0,0 =
1√
3
, a0,2 = a2,0 =

1√
6
, a1,1 =

1√
3
. (23)

The complete matrix is

[

ρ
(1)
2

]

=











1
2

0 1
3
√
2

0 1
3

0

1
3
√
2
0 1

6











, (24)

whose eigenvalues are

λ± =
2±

√
3

6
; λ2 =

1

3
. (25)

Of course, for n > 1, even though the 1-RDM was obtained analytically, the eigenvalues

must be calculated numerically.

In figure 1a) the two largest eigenvalues of ρ are shown against 1/ν, and in figure 1b) the

third and fourth eigenvalues.

In the strong interaction limit ν → ∞ the eigenvalues become doubly degenerate and can

be calculated within the harmonic approximation [39] (which becomes exact in this limit)

to be given by asymptotic formulas

λν→∞
2k+1,2k+2 = 2

√
2(3− 2

√
2)(17− 12

√
2)k, k = 0, 1, . . . . (26)

For the lowest occupancies we obtain λν→∞
1 = λν→∞

2 = 2
√
2(3− 2

√
2) ≈ 0.485281, λν→∞

3 =

λν→∞
4 = 2

√
2(99−70)

√
2) ≈ 0.0142853. The eigenvalues λ1, λ2 coincide to 15 digits ((real(8)

precision) for n ≥ 22, and λ3, λ4 for n ≥ 25 with the asymptotic values.

The von Neumann entropy is shown in figure 2 a), and the linear entropy in figure 2b) for

n = 1, . . . , 50. We note that the entropies have a maximum between n = 2 and n = 3. Using
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0 10 20 30 40 50

n=ν/2
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1.18

1.2

1.22

S
2
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n=ν/2
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0.51
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0.53

L
2

(b)

FIG. 2. a) von Neumann entropy for N = 2. b) Linear entropy for N = 2. The asymptotic values

are indicated by the dash-dotted blue lines.

the analytical formula for λν→∞
k (26) and performing the summation in the formulas (18),

the asymptotic values of the entropies can be calculated. The asymptotic value of the linear

entropy is determined as

L
ν→∞

2 = 1− 2
∞
∑

k=1

[λν→∞
k ]2 = 1−

√
2

3
≈ 0.528595, (27)

and the asymptotic value of the von Neumann entropy as being equal to

Sν→∞
2 = −2

∞
∑

k=1

λ
ν→∞

k log2λ
ν→∞

k =
3 log2

(

3 + 2
√
2
)

2
√
2

− 3

2
≈ 1.19737. (28)

The exact values plotted in figure 2 approach nicely those limits.

Finally, in figure 3 we show the one-particle density for n = 1, 2, 3, 20. The one-particle

density is an even function of the position, as can be expected from the symmetries of the

Hamiltonian. The two-peaked one-particle density explains, at some extent, the behavior

of the largest eigenvalues of the entanglement spectrum, as shown in figure 1, since for

large enough values of n it is easy to envisage that the eigenfunctions of the reduced density

matrix that corresponds to the two largest eigenvalues should be, approximately, two peaked

functions whose peaks should coincide with the peaks of the RDM, one of the then even

and the other one odd and that for large enough n both functions should weight more or

less the same when the spectral decomposition of the RDM is considered. This reasoning
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FIG. 3. One-particle density ρ2(x) for N = 2 and n = 1, 2, 3, 20.

applies when the two peaks of the one-particle density are well separated by a region where

its magnitude is negligible. Of course, this is not the case for small values of ν, where the

height of the two peaks is not so different from the value of the particle density at the origin.

Note that, because the wave function vanishes for x1 = x2, the one-particle density has two

peaks even in the limit ν → 1.

V. THE THREE, FOUR AND FIVE-BOSON CALOGERO MODEL

For N > 2, even though the p-RDM was obtained analytically, the eigenvalues must be

calculated numerically. Despite its elegant and concise form, the evaluation of all the terms

involved in equation 16 for increasing values of N becomes very demanding, so we present

results for N up to five.

Figure 4a) shows the von Neumann entropy for N=3 and its asymptotic value Sν→∞
3 ≈ 1.87494

[39, 40], and figure 4b) the one-particle density for n = 1, 2, 3, 20.

As can be easily appreciated from figure 4a), the behavior of the von Neumann entropy

is quite similar to the behavior already found for the case with N = 2. Once again the most

easily recognizable feature is the maximum that is attained near n = 3. Figure 4b) shows

the particle density as a function of n. As can be expected, the particle density has three

well defined peaks, one of them centered in the origin of the coordinate axis and the other
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(a)
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FIG. 4. a) von Neumann entropy for N = 3, the asymptotic value is indicated by the dash-dotted

blue line. b) One-particle density ρ3(x) for N = 3 and n = 1, 2, 3, 20

two placed symmetrically to both sides of the origin. The particle density is broader, as a

function of the coordinate, for three particles than for only two, reflecting the fact that the

repulsive term is stronger because the extra particle.

The von Neumann entropy of the 1-RDM is a increasing function of the particle number

as can be appreciated in figure 5a). All the curves shown in figure 5a) have a maximum,

and SN < SN+1 < SN+2 < . . . irrespective of the values of the interaction parameter ν.

The maximum of the von Neumann entropy seems to appear for ν/2 ∈ [2, 4] irrespective of

the number of particles considered, but since we are showing only those values that can be

obtained analytically, it is quite possible that if ν can be varied continuously that the actual

maximum is reached for a non-integer value of ν that depends on the number of particles.

From the data shown in figure 5a), it can be appreciated that the difference between

successive values of the von Neumann entropy for a given value of ν decreases when N

is increased. Anyway, if the data is converging to some limit the increasing difficulty to

evaluate the elements of 1-RDM and its eigenvalues prevented us from further exploring of

this possibility.

As has been said in the Introduction, there is a number of entropy-like functions that give

information about the information content of the quantum states under study. We choose

to explore the Jozsa-Robb-Wootters (JRW) sub-entropy [16], which is defined by
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FIG. 5. a) von Neumann entropy SN , and b) JRW sub-entropy QN for N = 2, 3, 4, 5. Inset: The

von Neumann entropy always shows a maximum for ν/2 ∈ [2, 4], to visualize it we plot a detailed

view of the different data sets. The peaks can be shown together by subtracting a constant quantity

to each data set.

QN = −
(2n(N−1)+1)p

∑

k=1

(

∏

j 6=k

λk
λk − λj

)

λk log2(λk) . (29)

since it gives a rigorous lower bound for the accessible information contained in the quantum

state. This sub-entropy has been exactly calculated recently for a variant of the two-particle

Moshinsky Hamiltonian [42].

In figure 5 b) we show QN for the Calogero model for N = 2, 3, 4, 5. Note that QN

qualitatively similar to SN , but QN << SN in all the calculated values.

Interestingly, the JRW sub-entropy also shows the non-monotonous behavior shown by

the von Neumann entropy and is too an increasing function of the particle number.

VI. THE TWO-FERMION CALOGERO MODEL

For two fermions we have an anti-symmetrical wave function

Ψ
(F )
0 (x1, x2) = Cν sign(x1 − x2) |x1 − x2|ν e−(x2

1+x2
2)/2 , (30)

where Cν is a normalization constant. We note that, in this case we can ignore the absolute
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value when ν is a odd integer, and it is possible to calculate the normalization constant,

then, for ν = 2n+ 1 we have

Ψ(F )
n (x1, x2) = 2n

√

2(2n+ 1)!

π(4n+ 2)!
(x1 − x2)

2n+1 e−(x2
1+x2

2)/2 , (31)

Even when the wave function is antisymmetrical, the 1-RDM is a symmetric operator,

then its matrix elements could be written in a Hermite basis following the steps of the

bosonic case.

In this case the the 1-RDM matrix is (2n+ 2)× (2n+ 2), decomposable in an even and

an odd (n+ 1)× (n+ 1) blocks. For the case n = 1 ⇒ ν = 3 the matrices are 2× 2 and its

eigenvalues can be calculated analytically. The complete matrix is

[

ρ
(1)
2

]

=

















7
20

0 3
10

√
2

0

0 9
20

0 1
10

√

3
2

3
10

√
2

0 3
20

0

0 1
10

√

3
2

0 1
20

















, (32)

whose eigenvalues are

λ± =
5±

√
22

20
, (33)

both with multiplicity 2. This is a general property that holds for all n because both, the

even and odd (n + 1)× (n+ 1) blocks of the 1-RDM are different but isospectral matrices.

The von Neumann entropy for two fermions is shown in figure 6, the bosonic entropy was

also included for comparison. Note that, at first and despite their closeness, both sets of

points belong to different curves (the 1-RDMs are different) yet, because the strong repulsion

between particles, the boson and fermion properties are almost coincident for large values

of the coupling strength ν. The quantitative differences between eigenvalues are largest in

the neighborhood of the non-interacting limit ν → 1. This behavior is opposite to the one

observed in the Moshinsky model where the difference between bosons and fermions is most

noticeable for strong coupling [32, 33].
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FIG. 6. von Neumann entropy for N = 2 for bosons (ν = 2n, solid black dots) and fermions

(ν = 2n+ 1, solid blue triangles).

VII. DISCUSSION AND CONCLUSIONS

As we have said previously, since the work of Moshinsky dealing with how much an

approximate two-particle wave function actually resembles the exact solution of the problem,

the need of benchmarks were an approximation scheme to obtain the information content

of a problem can be tested has become more and more pressing. In CV problems the usual

criteria used to qualify the accuracy of a given approximation are, basically, spectral, i.e if

the approximate eigenvalues found using the approximation are accurate in some sense then

it is assumed that the wave function and its information content should be accurate too.

We think that the exact results presented in this work can contribute as a benchmark where

to test some approximation schemes.

Katsura and Hatsuda, some years ago, have obtained an exact formal expression for the

p-RDM of the N -particle Calogero-Sutherland model on a ring of finite perimeter [43]. They

were able to write the p-RDM as a sum of products of functions where, in each term, the

dependencies with both sets of variables of the p-RDM is factorized, as in equation (15). In
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that equation, the p-RDM depends on the sets of variables {xi}p and {yj}p. Surprisingly, in
the expression of Katsura and Hatsuda, each term contains the exact ground state of their

model, ψCS
0 , through products of the form ψCS

0 ({xi}p) ψCS
0 ({yj}p), instead of the completely

factorized expression shown in equation 15, where each term depends on a product of Hermite

functions that depend in one, and only one, of the variables xi or yj. This fact, owed to the

Vandermonde determinant, allows us to find much more tractable expressions for the p-RDM

than those found by Katsura and Hatsuda. If N goes to infinity, both expressions, ours and

the one of Katsura and Hatsuda, become formal since its evaluation becomes extremely

troublesome. Although they provide an upper-bound for the entropy in this case, it is valid

only in the thermodynamic limit.

Despite that the present works deals with the one-dimensional Calogero model, its ex-

tension to three dimensional problems with zero angular momentum is rather direct. As a

matter of fact, using the results presented above we could obtain exactly some particular

values of the von Neumann entropy for the three dimensional two-particle Crandall atom.

This model was studied by Manzano et al. [29], but in their work the von Neumann entropy

was calculated using an approximate Monte Carlo integration scheme. From our data we

observe that the work of Manzano et al. predicts higher but very accurate values for the

von Neumann entropy in those cases where our result applies.

On the other hand, it is interesting to note that a non-monotonous behavior for the von

Neumann entropy was obtained for two-electron models using perturbation theory when the

interaction between the electrons is strongly localized and weak [26].

The von Neumann entropy of the two-particle three dimensional case is a non-decreasing

function of the interaction strength, in contradistinction with the one dimensional case.

We think that this is so because the particle “impenetrability”, which is typical of one-

dimensional problems, does not allow the particles to access some spatial regions, while

higher-dimensional problems do not posses this property. So far, we do not have a proof

confirming this hypothesis. Work around this lines is in progress.
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