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The effective action for the local composite operator 82(x) in the scalar quantum field
theory with *84 interaction is obtained in the expansion in two-particle-point-irreducible
(2PPI) diagrams up to five-loops. The effective potential and 2-point Green's functions for
elementary and composite fields are derived. The ground state energy as well as one- and
two-particle excitations are calculated for space-time dimension n=1, when the theory is
equivalent to the quantum mechanics of an anharmonic oscillator. The agreement with the
exact spectrum of the oscillator is much better than that obtained within the perturbation
theory. � 1996 Academic Press, Inc.

1. Introduction

The formalism of the effective action (EA) [1] is usually used in relativistic quan-
tum field theory; hovewer the formulation is universal and provides an effective
approach to any quantum theory. Here we consider the theory of a real scalar field
in n-dimensional Euclidean space-time with a classical action given by

S[8]=| [ 1
28(x)(&�2+m2) 8(x)+*84(x)] d nx. (1)

The simplest case of n=1 dimensional space-time, which is equivalent to the quan-
tum mechanics of the anharmonic oscillator (AO), is frequently used as a testing
ground for various field-theoretical methods. Here we shall discuss the method of
the EA for local composite operators which provides a systematic approximation
scheme for vacuum energy and lowest multi-particle excitations. We shall keep the
dimension of the space-time n arbitrary as long as possible, setting n=1 only in the
last stage, where the energies are calculated.

The conventional EA, which is a generating functional for one-particle-
irreducible (1-PI) Green's functions, is obtained by introducing a source coupled to
the quantum field 8(x). By coupling external sources to bilocal 8(x) 8( y) [2] and
local 82(x) [3] fields, the generating functionals for composite operators are
defined (for review see Ref. [4]). For an interacting theory the exact form of any
functional is not known, so one resorts to approximations. Formulating an

article no. 0076

367
0003-4916�96 �18.00

Copyright � 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.



approximation scheme for a generating functional, a consistent set of approximate
Green's functions can be obtained through differentiation. This is crucial for a
relativistic quantum field theory, where the process of renormalization has to be
performed. Any functional, if calculated exactly, contains the same information and
gives the same result for a physical quantity; however, the same approximation
scheme for various functionals would result in different approximations of Green's
functions and observables. Therefore, an appropriate choice of a generating func-
tional for calculating a quantity of interest is important. The conventional EA is
used for discussing a vacuum structure and one-particle excitations. For a
simultaneous study of two-particle excitations, the EA for composite operators is
more suitable, since it determines the conventional EA (by eliminating the expecta-
tion values of composite operators) and generates Green's functions related directly
to one- and two-particle eigenmodes.

Generating functionals can be calculated in the loop expansion. The conventional
EA, 1[.], is given by a sum of one-particle irreducibile vacuum diagrams [1]. The
EA for the bilocal composite operator, 1[.(x), G(x, y)] is given by two-particle-
irreducibile (2PI) diagrams [2]. The one-loop result, after eliminating the full
propagator G(x, y), gives the Gaussian approximation for the conventional EA;
however, beyond one-loop the gap equation for G(x, y) is a highly non-trivial
integral equation. The EA for the local composite operator, 1[.(x), 2(x)], can be
also obtained diagramaticaly [5, 6] and the one-loop result gives the Gaussian
approximation. Calculations of post-Gaussian corrections are easier in this
approach, since the gap equation for the vacuum expectation value of the local
composite field is algebraic.

The vacuum functional for the composite operator 82(x) is represented by a path
integral

Z[J1 , J2]=eW[J1 , J2]=| D8 e&S[8]+� J1(x) 8(x) dnx+1�2 � J2(x) 82(x) dnx (2)

and the EA is obtained as a Legendre transform

1[., 2]=W[J1 , J2]&| J1(x) .(x) d nx& 1
2 | J2(x)(.2(x)+2(x)) d nx, (3)

where

$W
$J1(x)

=.(x), and
$W

$J2(x)
=

1
2

(.2(x)+2(x)) (4)

determine the expectation values of the fields 8 and 82, in the presence of external
currents J1 and J2 . The EA fulfils

$1
$.(x)

=&J1(x)&J2(x) .(x), (5)
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and

$1
$2(x)

=&
1
2

J2(x). (6)

Setting J1=J2=0, which reproduces the physical theory (1), results in variational
equations

$1
$.(x)

=0 (7)

and

$1
$2(x)

=0. (8)

These equations determine the vacuum expectation values .0 and 20 , which are
space-time independent, by translational invariance.

The conventional EA can be obtained as 1[.]=1[., 20] with 20[.] deter-
mined by inverting the gap equation (8). The effective potential (EP), defined by

V(,)=&
1[.] |.(x)=,=const

� d nx
, (9)

gives the vacuum energy density V(.0).
Green's functions, generated from the EA for local composite operators, provide

a convenient tool to study multi-particle states, since their zero modes give directly
the excitation energies above the ground state. One-particle eigenmode is deter-
mined by the 2-point Green's function for the elementary field

1 2(x& y)=
$21

$.(x) $.( y) }.(x)=.0 , 2(x)=20

, (10)

which is an inverse of the full propagator

W 2(x& y)=(T8(x) 8( y)) connected . (11)

An appropriate function to study two-particle excitation is the 2-point Green's
function for the composite field

1 4(x& y)=
$21

$2(x) $2( y) }.(x)=.0 , 2(x)=20

(12)

which is an inverse of the function

W 4(x& y)=(T82(x) 82( y))connected , (13)
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called polarisation (density fluctuaction) propagator in many-body physics. This is
an advantage of the EA for the composite operator that 1 2, as well as 1 4, can be
obtained from 1[., 2] through differentiation. In the conventional approach 1 4

cannot be derived directly from the EA, but the polarisation propagator W 4 has to
be calculated and its inverse has to be found.

In Section 2 the 2PPI expansion for the effective action for the composite
operator 82(x) is discussed, the EP and Green's functions 1 2 and 1 4 are obtained
up to five loops for the scalar theory in the space-time of n-dimensions. In Section
3 we discuss the method for n=1, when the theory has a physical interpretation of
a quantum-mechanical anharmonic oscillator. The EP and spectral properties of
Green's functions obtained in 2PPI expansion are studied and the resulting energies
are compared with the exact spectrum of the AO. Our conclusions are summarised
in Section 4.

2. The 2PPI Expansion

Verschelde and Coppens [6] represented the EA for the local composite operator
in the form

1[., 2]=&S[.]&6* | .2(x) 2(x) d nx&3* | 22(x) d nx

+ 1
2 | 2(x)(02[., 2]&m2) d nx+1 2PPI[., 02[., 2]], (14)

where

02=m2&J2[., 2]+12*(.2+2). (15)

They have shown that 1 2PPI[., 02[., 2]] is a sum of the 2PPI diagrams, defined
as those which stay connected after cutting one or two internal lines meeting in the
same vertex. The (inverse) propagator is given by

G&1(x, y)=(&�2+02(x)) $(x& y), (16)

where the effective mass 0 is determined as a function of 2 and . by inverting the
equation

$1 2PPI

$02(x)
=&

2(x)
2

, (17)

obtained from equation (6). We have slightly modified the notation of Verschelde
and Coppens, by introducing the effective mass 0[., 2] and using * not divided
by 4!
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The conventional 1[.] is given by 1[., 20], with 20[.] determined by the gap
equation

02[., 2]=m2+12*(2+.2), (18)

obtained by setting J2=0 in equation (15). Instead of 20[.] we shall use a self-
consistent mass 00[.], determined from Eq. 17 and 18.

Green's functions in the 2PPI expansion are obtained as functional derivatives of
1[., 2] at .=.0 and 2=20 . For simplicity, we consider here the case of
unbroken reflection symmetry, taking .0=0. The 2-point Green's function for the
elementary field (10) is given by

1 2(x& y)=&(&�2+02) $(x& y)+
$21 2PPI

$.(x) $.( y) }.(x)=0, 0(x)=00

. (19)

and its Fourier transform will be denoted by 1 2( p). The 2-point Green's function
for the composite field (12) can be represented by

1 4(x& y)=&6*$(x& y)& 1
26&1(x& y) (20)

where

6(x& y)=2
$21 2PPI

$02(x) $02( y) }.(x)=0, 0(x)=00

(21)

is a sum over irreducible polarisation parts. Its Fourier transform is given by

1 4( p)=&6*&
1

26( p)
. (22)

The EA can be expanded in powers of the Planck constant �, which is equivalent
to the expansion in the number of loops [1]. As shown by Verschelde and
Coppens, in the EA for the local composite operator only the 2PPI diagrams are
present. The one-loop approximation, after setting �=1, is given by

11[., 2]= &| [ 1
2.(x)(&�2+m2) .(x)+*.4(x)] d nx

+ 1
2 | d nx 2(x)(02[., 2]&m2&12*.2(x)

&6*2(x)& 1
2 Tr Ln G&1 (23)

with the effective mass equation (17) given by

2(x)=G(x, x). (24)
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The conventional EA, obtained as 1[., 20] with a self-consistent mass 00 ,
determined by the gap equation

02(x)&m2&12*.2(x)&12*G(x, x)=0, (25)

coincides with the Gaussian EA obtained in other approaches: in the time-
dependent Hartree approximation [7], from the EA for the bilocal composite
operator [2], and in the optimized expansion [8]. The Gaussian EP [9] at ,=0
gives the vacuum energy density in the form

VI (0)=I1(00)+ 1
2 (m2&02

0) I0(00)+3*I 2
0(00), (26)

with 00 fulfiling an algebraic gap equation

02&m2&12*I0(0)=0, (27)

where

I1(0)=
1
2 |

d np
(2?)n ln( p2+02) and I0(0)=|

d np
(2?)n

1
p2+02 . (28)

To this approximation the two-point vertex for the elementary field

&1 2
1( p)=p2+02

0 , (29)

is the same as obtained from the Gaussian EA. The 2-point vertex for the composite
field, obtained by differentiation of 11[., 2], is equal to

&1 4
1( p)=6*+

1
I&1( p)

(30)

where

I&1( p)=2 |
d nq

(2?)n

1
(q2+02)(( p+q)2+02)

. (31)

This is at variance with the inverse of the polarisation propagator, which is
obtained [8] from the Gaussian EA in the form

W 4
1( p)

=
I&1( p)

1+6*I&1( p)
&288*2

_|
d nq d nq$

[1+6*I&1(q+q$)](q2+02)[( p+q)2+02](q$2+02)[( p+q$)2+02]
.

(32)
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Fig. 1. The value of the EP at ,=0 and the functions 1 2( p) and 6( p) in the 2PPI expansion up
to five loops. The small circle denotes an initial or final momentum P&.

Higher orders of the 2PPI expansion provide corrections to the Gaussian
approximation. The EP and vertices can be calculated from the given order
approximation of 1[., 2]. The obtained expressions can be represented in terms of
Feynman diagrams in momentum space, since ,, 20 and 00 are space-time inde-
pendent. The gap equation for 00 becomes an ordinary non-linear equation. In
Fig. 1 we show a diagrammatic representation for V(0) and 6( p) (up to five loops)
and for 1 2( p) (up to four loops). Analytical expressions can be read from the
figure.

3. Quantum-Mechanical Anharmonic Oscillator

In the space-time of one dimension the *84 theory is equivalent to the quantum
mechanics of the AO with a Hamiltonian given by

H= 1
2 p2+ 1

2m2x2+*x4. (33)
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The Euclidean propagators are given by

W 2(T )=Gc(T, 0)=:
�

1

|((0| x |k)) | 2 e&|T| =k (34)

and

W4(T )=Gc(T, T, 0, 0)+2G2
c(T, 0)=:

�

2

|((0| x2 |k)) | 2 e&|T| =k, (35)

where Gc are connected Green's functions with the number of points equal to the
number of arguments, |k)) denotes the kth excited state of the AO with excitation
energy =k=Ek_E0 , and x is a position operator in the Schro� dinger representation.
The Fourier transform gives the functions

W 2( p)=:
�

1

2=k |((0| x |k)) | 2

p2+=2
k

; W 4( p)=:
�

2

2=k |((0| x2 |k)) | 2

p2+=2
k

(36)

which have poles at imaginary momenta, their absolute values are equal to excita-
tion energies. The Green's functions 1 2 and 1 4, generated from the exact EA for
the local composite operator, are the inverses of the above propagators. They have
an infinite number of zeros, which determine odd and even excitations of the AO,
respectively. However, in the given order of the 2PPI expansion every Green's func-
tion has only a finite number of zeros and gives an approximation of some part of
the energy spectrum.

The EP and Green's functions in the 2PPI expansion, read from Fig. 1, can be
calculated easily in one dimensional space-time. The powers of � are given
explicitely in the obtained expressions to identify orders of the expansion, in the
given order approximation we put �=1. The value of the EP at ,=0 gives the
ground state energy equal to

E0=&
(02

0&m2)2

48*
+�

00

2
&�3 3*2

805
0

+�4 27*3

1608
0

&�5 2373*4

128011
0

(37)

with 00 determined by the gap equation

(02&m2)
12*

&�
1

20
&�3 15*2

807 +�4 27*3

2010&�5 26103*4

128013 =0. (38)

The 2-point vertex for the elementary field, read from Fig. 1, is calculated to be
equal to

&1 2( p)=02
0+p2&

72�2*2

(902
0+p2) 02

0

+
108�3*3(4502

0+p2)
05

0(902
0+p2)2

&
27�4*4(58927506

0+7341304
0 p2+284102

0 p4+47p6)
08

0(902
0+p2)3 (2502

0+p2)
(39)
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Fig. 2. The ground-state energy of the AO, obtained to the given number of loops in the 2PPI
expansion (dashed lines), plotted vs. z=m2�2*2�3; compared with the exact value (solid line) and given
order perturbative results (dotted lines).

and 1 4( p) can be found from (22) with the irreducible polarisation given by

6( p)=
�

(402
0+p2) 00

+
3�3*2(224004

0+14802
0 p2+5p4)

407
0(402

0+p2)2 (1602
0+p2)

&
27�4*3(1024006

0+81604
0 p2+4502

0 p4+p6)
010

0 (402
0+p2)2 (1602

0+p2)2

+
3�5*4

64013
0 (402

0+p2)3 (1602
0+p4)3 (3602

0+p2)

_(266867048448012
0 +97427046400010

0 p2+1115632332808
0 p4

+78313580806
0 p6+3547614404

0 p8+87642802
0 p10+8701p12). (40)

Excitation energies are calculated as zeros of 1-function, determined to the given
order in �. The root of 1 2( p)=0 is calculated to be at

=1=00&
9�2*2

205
0

+
297�3*3

808
0

&
4599�4*4

8011
0

, (41)
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Fig. 3. As in Fig. 2, but for first excitation energy of the AO, obtained as zero of 12 function in the
2PPI expansion.

and that of 1 4( p)=0 is equal to

=2=200+
3�*
02

0

&
117�2*2

405
0

+
3159�3*3

808
0

&
488565�4*4

64011
0

. (42)

Expanding the above energies to the fourth order in powers of * gives

=pert
0 =m�2+

3*
4m2&

21*2

8m5 +
333*3

16m8 &
30885*4

128m11

=pert
1 =m+

3*
m2&

18*2

m5 +
1791*3

8m8 &
3825*4

m11

=pert
2 =2m+

9*
m2&

297*2

4m5 +
9873*3

8m8 &
1772685*4

64m11 , (43)

in agreement with the perturbation theory for Schro� dinger equation. The pertur-
bative energies (43) can be obtained from the loop expansion of the conventional
EA [8]; however, more diagrams has to be evaluated and a calculation of =2 is
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Fig. 4. As in Fig. 2, but for second excitation energy of the AO, obtained as zero of 14 function in
the 2PPI expansion.

furthermore complicated, since 1 4 cannot be derived directly from the conventional
EA. The 2PPI expansion provides the simplest way for a field theoretical derivation
of the perturbative (in *) results for the ground state and two lowest excitations.

We have studied numerical results for the ground state energy and two lowest
excitations in the 2PPI expansion. To the given order, the largest positive root of
the gap equation has been found numerically; in the case where the solution became
complex, the real part of the approximant was taken. The results are compared
with perturbative energies (43) and exact eigenvalues, calculated by the numerical
procedure based on the modification of the linear variational method [10]. All
results are presented as functions of a dimensionless fraction z=m2�2*2�3, which is
the only parameter of the theory, after rescaling all quantities in terms of *.

The results for ground state energy (37) in successive orders of 2PPI expansion
are shown in Fig. 2. The quality of the approximation is very good in the whole
range of the parameter z, only for values smaller than z2PPI

0 r0.2 small discrepan-
cies between different orders of the 2PPI expansion and the exact result appear. The
perturbative results, differ heavily below the much larger critical value zpert

0 r2.5. In
Fig. 3 we show the first excitation energy (41) in successive orders of the 2PPI
expansion, compared with the exact result. There is the critical value z2PPI

1 r1.3,
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above which the agreement is good; this value is much smaller than the critical
value for perturbative results zpert

1 r3.3. In Fig. 4 the energies (42), obtained by
solving 1 4( p)=0 to the given order in �, are compared with the second excitation
energy. The agreement is worse than in previous cases. The critical value z2PPI

2 r2.2
is again smaller than a critical value for perturbative results zpert

2 r4.

4. Conclusions

The 2PPI expansion for EA for the local composite operator is a convenient tool
to study a vacuum and lowest excitations in the scalar quantum field theory. The
one-loop result gives the Gaussian approximation, where the effective propagator is
a Hartree one. Successive approximations of the EP and the Green's functions 1 2

and 1 4 have been obtained; to each order the effective mass is determined from the
algebraic gap equation.

The results for ground state energy and two lowest excitations have been
calculated in successive orders of 2PPI expansion for the theory in the space-time
of one dimension, i.e., for quantum mechanical AO. The gap equation has been
solved numerically. The ground state energy was obtained as a value of the EP at
,=0 and excitation energies were determined as zeros of appropriate Green's func-
tions. A comparison with the exact spectrum of the AO shows that the convergence
of the 2PPI expansion is the best for the ground state. For excited states the critical
value above which the expansion converges to the exact result is greater. The higher
excitation, the larger critical value, and the region of applicability of the
approximation diminishes. This is similar as in the perturbation theory; however,
the region of applicability of the 2PPI expansion is much larger for all energy levels.

The numerical results of the 2PPI approach for the lowest excitations up to
second order are very similar to that obtained in the optimized expansion and the
large N expansion to the same order [8]. Even to this order, the calculations in the
later methods are not as straightforward as in the 2PPI expansion, since 1 4 cannot
be derived directly. In higher orders the optimized and large N expansion would
become even more complicated, requiring to solve a gap equation of Bethe-Salpeter
type. With the use of the Cornwall-Jackiw-Tomboulis EA for bilocal composite
operators the situation would be very much the same. Therefore, the EA for local
composite operators provides the simplest method to study the ground state and
the lowest excitations in the case of the AO. We hope that the application of the
2PPI expansion to the EA for local composite operators will also appear useful for
approximate study of two-particle excitations in quantum field theories in higher
dimensional space-time.
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