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Abstract Examination of the ground-state correlation properties of two Coulombically interacting bosons
confined in strongly anisotropic harmonic potentials is carried out within the framework of the single-mode
approximation of the transverse components. The linear entropy of the quasi-one dimensional systems is dis-
cussed in dependence on the confinement anisotropy and the interaction strength. A comparison with a strictly
one-dimensional limit is performed.

1 Introduction

Artificially created effective many-body systems such as quantum dots and trapped atoms or ions, which can
be investigated under controllable and tunable experimental conditions, are promising candidates for quantum
computing devices. The profound understanding of their strongly correlated regime is of particular importance
for the practical applications. The Coulombically interacting particles in a harmonic trap can be used to model
a system of ions in an electromagnetic trap. Here we consider a system of two bosons confined in an axially
symmetric 3D harmonic potential with trapping frequencies ωx and ω⊥ = εωx . The system is described by
the Schrödinger equation H�(r1, r2) = E�(r1, r2) with a Hamiltonian

H =
2∑

i=1

[
−�2

i

2
+ 1

2
x2
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2
ε2ρ2

i

]
+ g

|r1 − r2| , (1)

where ρi =
√

y2
i + z2

i . In order to reduce the number of parameters the coordinates are measured in terms

of the longitudinal oscillator length
√

mωx
h̄ , the energies in terms of h̄ωx , and the dimensionless coupling

g = e2

4πε0

√
m

h̄3ωx
represents the ratio of the Coulomb interaction to the longitudinal trapping energy scale. We

focus our attention on experimentally accessible quasi-1D case when the anisotropy parameter ε � 1 and the

particles may be assumed to stay in the lowest energy state of the transverse Hamiltonian H⊥ = −�2
ρ

2 + 1
2ε

2ρ2.
The two-body wave function in the one-mode approximation takes the form

�(r1, r2) ∼= ψ1D(x1, x2)ϕ(y1)ϕ(z1)ϕ(y2)ϕ(z2), (2)
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where ϕ(y) = ( ε
π
)

1
4 e− εy2

2 and ϕ(z) = ( ε
π
)

1
4 e− εz2

2 , while ψ1D is a real function that fulfills the approximate
Schrödinger equation

[
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+ gU1D(x2, x1)+ 2ε

]
ψ1D(x1, x2) = E1Dψ1D(x1, x2). (3)

with the effective interaction potential U1D(x1, x2) =
√
επ
2 e

ε(x2−x1)
2

2 (1 − er f [
√
ε
2 |x2 − x1|]), where er f (x)

is the error function. The effective potential depends on the anisotropy parameter ε and we can notice that the
larger is the value of ε, the closer to the origin does the effective potential begin to exhibit Coulomb behavior.
In the 1D limit of ε → ∞, the effective potential becomes Coulombic, and diverges at x1 = x2, which causes
ultraviolet divergences in the direct calculations of symmetric wave functions. Fortunately, the calculation in
the strictly 1D limit may be performed [1] thanks to the Bose–Fermi mapping ψ+

1D(x1, x2) = |ψ−
1D(x1, x2)|,

which relates the ground-state wave function ψ+
1D(x1, x2) to the lowest energy antisymmetric wave function

ψ−
1D(x1, x2) whose a relative motion part can be determined through the Rayleigh–Ritz method with a basis

of odd eigenfunctions of the 1D harmonic oscillator.

2 Localization of the Particles

Localization of the particles can be studied by analysing the two-particle probability density ψ2
1D(x, x ′).

Another source of information is the one-particle reduced density matrix (RDM) defined as

ρ(r, r′) =
∫
�(r, r2)�(r′, r2)dr2, (4)

which in the one-mode approximation (2) is given by

ρ(r, r′) ∼= ϕ(y)ϕ(y′)ϕ(z)ϕ(z′)ρ1D(x, x ′). (5)

The 1D effective RDM can be represented in the Schmidt form

ρ1D(x, x ′) =
∫
ψ1D(x, x2)ψ1D(x

′, x2)dx2 =
∞∑

l=0

λlvl(x)vl(x
′), (6)

where {vl(x)} are the natural orbitals and their occupancies {λl}. In the case of a two-particle system, the natural
orbitals can be determined more easily from the wave function, which being real and symmetric, admits the
Schmidt decomposition

ψ1D(x1, x2) =
∞∑

l=0

klvl(x1)vl(x2). (7)

It is easy to check that the coefficients {kl} are related to the eigenvalues of the RDM byλl = k2
l . Below we com-

pare the distributions ψ2
1D(x, x ′) with ρ1D(x, x ′) for anisotropically confined systems of two Coulombically

interacting bosons.
The plots of the two-particle probability densities ψ2

1D(x, x ′) calculated for a highly anisotropic system
(ε = 30) are shown in top row of Fig. 1 at four values of the scaled interaction strength g. Due to repulsive
nature of the interaction, the probability of finding the bosons close to each other decreases with increasing g,
which explains the widening of the gap of vanishingly small probability which stretches along the diagonal.
For comparison the probability densities calculated at the same values of g for the strictly 1D system (ε → ∞)
are shown in bottom row of Fig. 1. The differences are visible only at small values of g, where the gap in
the probability distribution at anisotropy ε = 30 is much narrower than that of the corresponding strictly 1D
system. Above g ≈ 2 the differences disappear and the probability distribution of the system with anisotropy
ε = 30 reproduces the one calculated in the strictly 1D limit.
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Fig. 1 Two-particle probability density ψ2
1D(x, x ′) at various interaction strengths g = 0.5, 1, 2, 5. The case of anisotropy

ε = 30 (top) compared with the strictly 1D limit of ε = ∞ (bottom)

In Fig. 2, the plots of the 1D effective RDM ρ1D(x, x ′) are shown at the same values of g as ψ2
1D(x, x ′)

in Fig. 1. The results for the system with anisotropy ε = 30 (top row) are compared with those of the strictly
1D system (bottom row). Similarly as was the case for ψ2

1D(x, x ′), the differences between RDM at ε = 30
and that at ε → ∞ disappear above g ≈ 2. In the case of ρ1D(x, x ′), the localization of the particles due to
repulsive interaction shows up in diminishing of the off-diagonal contributions with increasing g. It is clearly
visible that the off-diagonal parts disappear only above g ≈ 5 and the particles can be treated as individual
entities, which corresponds to a Wigner molecule.
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Fig. 2 Effective RDM ρ1D(x, x ′) at various interaction strengths g = 0.5, 1, 2, 5. The case of anisotropy ε = 30 (top) compared
with the strictly 1D limit of ε = ∞ (bottom)

It is interesting to note that the plots obtained in the strictly 1D limit (bottom rows of Figs. 1, 2) show some
similarities to those for the Tonks molecule of two contact interacting bosons in the 1D trap with a barrier of
tunable height at the center [2].
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3 Entanglement in the Two-Boson System

The entanglement in two-particle systems is fully characterised by the Schmidt decomposition of wave func-
tion (7). Popular entanglement measures are constructed as functions of natural orbital occupancies {λl}. The
easiest to calculate is the linear entropy defined as

L = 1 −
∫ ∫

ρ1D(x, x ′)2dx ′dx = 1 −
∑

l

λ2
l . (8)

In Fig. 3, we compare our numerical results for the linear entropy of the two Coulombically interacting bo-
sons at various confinement anisotropies with those calculated for the strictly 1D system. The linear entropy
increases with g and above g ≈ 5 saturates at a constant value that does not depend on the anisotropy
parameter ε.
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Fig. 3 Linear entropy L as a function of g at different confinement anisotropies ε = 5, 30, 100, 1, 000. Dashed line represents
the results for the strictly 1D case

The asymptotics at g → ∞ can be studied analytically, using the harmonic approximation that becomes
exact in this limit [3]. The calculation analogous to that performed by us in the 2D case [3] gives Lg→∞ =
1 −

√
− 3

2 + √
3 ≈ 0.518, which is in agreement with the numerical result. In the limit of g → ∞, we have

checked that only two lowest natural orbitals are actively involved in (7), since only their corresponding occu-
pancies have considerable values, namely kg→∞

0 ≈ −0.7005, kg→∞
1 ≈ 0.7005 (λ0 = λ1 = 0.4907), which is

reflected by the value of the asymptotic linear entropy. This means that the ground-state of strongly repelling
bosons (g → ∞) is represented with a satisfactory accuracy by a single permanent, which implies that the
state is almost perfectly fragmented and very weakly entangled [4].

The above calculation can be extended to systems containing more than two particles. The linear entropy
in the case of N = 3 and N = 4 shows a similar behavior [5] to the one shown in Fig. 3. In the systems
of ions in linear traps, which provide experimental realization of the discussed model, the values of g are
much larger than the value at which we observe the saturation of the entropy. In this regime, the correlation
depends very weakly on anisotropy and the strictly one-dimensional approximation is well justified. It would
be however interesting to consider systems with larger number of particles and the excited states, where a
stronger dependence on the anisotropy is expected. We are also planning to study the time behavior of the
entropic correlation measures in quasi-1D systems interacting with external degrees of freedom, which is of
vital importance for quantum computing.

We are also planning to study the time behavior of the entropic correlation measures between the external
and internal degrees of freedom of the trapped ions, which is of vital importance for quantum computing.
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4 Summary

In summary, we investigated the ground-state properties of the system of two bosons that repel by Coulomb
interaction in the strongly anisotropic confinement. Within the framework of the single-mode approximation of
the transverse component, we calculated the two-particle probability density, the RDM and the linear entropy
for several values of the scaled interaction strength g. In the regime of small values of g, the anisotropy param-
eter ε influences the behavior of both the two-particle probability density and the effective 1D RDM, so that
increasing anisotropy results in an increase in the interparticle distances. Above g ≈ 2, there is no appreciable
change in the probability distribution and in the RDM with ε. The onset of the Wigner crystallization shows up
in vanishing of the off-diagonal contributions in the RDM, which happens at g � 5. The linear entropy of the
systems is larger for higher anisotropy and increases with the increase in g. Above g ≈ 5 the entropy saturates
at a constant value that does not depend on the anisotropy, the ground-state of the corresponding system is
almost non entangled.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Astrakharchik, G.E., Girardeau, M.D.: Exact ground-state properties of a one-dimensional Coulomb gas. Phys. Rev.
B 83, 153303 (2011)

2. Murphy, D.S., McCann, J.F., Goold, J., Busch, Th.: Boson pairs in a one-dimensional split trap. Phys. Rev. A 76, 053616 (2007)
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