NA61/SHINE and Cosmic Ray Physics

Ralf Ulrich

Karlsruhe Institute of Technology

V Polish Workshop on Relativistic Heavy-Ion Collisions SHIN(E)ING Physics Some Open Questions in Cosmic Ray Physics

Flux of Cosmic Ray Particles

Flux of Cosmic Ray Particles

The Knee - Feature of Galactic Cosmic Rays ?

The Ankle - Transition to Extra-Galactic Cosmic Rays ?

Flux Suppression - End of the Cosmic Ray Spectrum ?

(Pierre Auger Collaboration, Science 318:938-943, 2007)

 \Rightarrow Cosmic ray events above 56 EeV correlate within 3.1° with a selection of astrophysical objects within a sphere of 75 Mpc

 $\Rightarrow\,$ Given a galactic magnetic field of $\sim \mu G$ only protons are able to explain this

(Pierre Auger Collaboration, Science 318:938-943, 2007)

- \Rightarrow Cosmic ray events above 56 EeV correlate within 3.1° with a selection of astrophysical objects within a sphere of 75 Mpc
- $\Rightarrow\,$ Given a galactic magnetic field of $\sim \mu G$ only protons are able to explain this

 \Rightarrow Only few dominant and close-by sources are relevant

 \Rightarrow Very heavy mass composition is possible

- \Rightarrow Only few dominant and close-by sources are relevant
- \Rightarrow Very heavy mass composition is possible

Importance of Accelerator Measurements

Mass Composition of Cosmic Rays and Model Dependence

Air Shower Simulations:

- Particle tracking in magnetic field of Earth
- Particle tracking in differential atmosphere
- Interactions over \sim 10 orders of magnitude in lab. energy:

Hadronic Interactions

low energies:

- GHEISHA (Fesefeldt)
- FLUKA (Fasso, Ferrari, Ranft, Sala)
- UrQMD (Bass, Bleicher et al.)

 \rightarrow mostly parametrizations of data

high energies:

- DPMJET II.5 (Ranft & Roesler)
- QGSJET 01/II (Kalmykov & Ostapchenko)
- SIBYLL2.1 (Engel, Fletcher, Gaisser, Lipari & Stanev)
- EPOS 1.61 (Pierog & Werner)

 \rightarrow all QCD-inspired models (minijets)

transition low/high energies: 80 - 200 GeV

SHIN(E)ING Physics - Kielce - 6. December 2008

Lateral Particle Densities

Impact of High Energy Model

Muons

Electrons

(I. Maris et al., ISVHECRI 2008)

SIBYLL vs. QGSJET

Impact of Low Energy Model

Muons

(I. Maris et al., ISVHECRI 2008)

Electrons

Fluka vs. Gheisa

Impact of Transition Energy for Low/High-Energy Model

Muons

Electrons

(I. Maris et al., ISVHECRI 2008)

80 GeV vs. 500 GeV

Model Inconsistencies in Air Shower Interpretation

Distribution of χ^2 of deconvoluted $N_{
m e}/N_{\mu}$ -spectra to data

Auger - Shower-by-shower

(F. Messar, diploma thesis)

- Perfect description of longitudinal development
- Underestimation of particle densities at ground. Worse at:
 - large lateral distances
 - large distances of X_{\max} from ground
- → Muon deficit in simulations ?

(Auger Collaboration, ICRC 2007)

Energy scale ?Muon deficit in simulations ?

Muon Production in Air Showers

Relevant Interactions in Air Showers for Muon Production

Relevant Target: Air (¹⁴N, ¹⁶O, ...)

Existing p-¹²C Data

(C. Meurer et al., ISVHECRI 2006)

Comparison of NA49 Data to Models

(Tanguy Pierog)

Inelastic Cross Sections

(Tanguy Pierog)

Multiplicity in the Transition Region

Important: Investigate particle production in p-C and π -C interactions

Energy region around 100 GeV equally relevant for low and high energy interaction models

NA61/SHINE is well suited for the task

Better understanding of hadronic physics in forward direction \Rightarrow Major breakthrough in cosmic ray data analsis