

- Effective Chiral Models and QCD phase diagram:
- Charge Fluctuations probe of deconfinement and chiral phase transition :
 - Focusing of isentropic trajectories near CEP
 - Bulk and shear viscosity near CEP

Extendet PNJL model and its mean field dynamics

$$L_{NJL} = \overline{q}(iD_{\mu} - m)q + G_{S}[(\overline{q}q)^{2} + (\overline{q}i\tau\gamma_{5}q)^{2}] - G_{V}^{(S)}(\overline{q}\gamma_{\mu}q)^{2}$$
$$-G_{V}^{(V)}(\overline{q}\tau\gamma_{\mu}q)^{2} + \mu_{q}q^{+}q + \mu_{I}q^{+}\tau_{3}q - U(\Phi[A], \overline{\Phi}[A], T)$$
$$D_{\mu} = \partial_{\mu} - iA_{\mu}\delta_{\mu0} \quad \Phi = \frac{1}{N_{c}}Tr(P\exp[i\int d\tau A_{4}(\vec{x}, \tau)]) \left\langle \Box_{loop}^{Polyakov} \right\rangle_{loop}$$

An effective Z(3)-invariant Polyakov loop potential U(Φ) from
 A. Dumitru & R. D. Pisarski, fixed so that to reproduce the LGT results obtained in a pure gauge theory at finite T.

• Thermodynamic under mean-field approximation: $\Omega(\langle qq \rangle, \langle \Phi \rangle, \mu, T)$ and $\partial \Omega(x_i, T) / \partial x_i = 0$

Chiral Symmetry Restoration – Order Parameter

Divergence of the chiral susceptibility at the 2nd order transition and at the TCP

Discontinuity of the chiral susceptibility: at the 1st order transition

Generic Phase diagram for effective chiral Lagrangians

Generic structure of the phase diagram as expected in QCD and in different chiral models see eg.: J. Berges & Rajagopal; M. Alford et al; C.Ratti & W. Weise; B. J. Schaefer & J. Wambach; M. Buballa & D. Blaschke; B. Friman, C. Sasaki at al., M.Stephanov et al.,.... Quantitative properties of the phase diagram and the position of TCP are strongly model dependent Large G_{v}^{S} no TCP at finite T • $m_a \neq 0$ acts as an external magnetic field and destroys the 2nd order transition to the cross-over and moves TCP to CEP

Including quantum fluctuations: FRG approach

The position of CEP is strongly modify by quantum fluctuations

Susceptibilities of conserved charges

Scaling properties: $\chi_q = \partial^2 P / \partial \mu^2 \approx a + b |T - T_{TCP}|^{-\theta}$

Quark and isovector fluctuations along the critical line

NJL-model results: C. Sasaki, B. Friman, K.R.

central Pb+Pb collisions (NA49) multiplicity fluctuations

M. Gazdzicki et al. NA61

the predicted CP fluctuations are not observed, freeze-out far from CP?

Focusing: CEP attractor for isentrops

For a given chemical freezeout point, prepare three isentropic trajectories: w/ and w/o CP: Asakawa, Nonaka

LGT results and isentrops for different S/N

F. Karsch et al.

Focusing in the model calculations

- Focusing in the model where the EQS
 is constructed on the basis of Z(2) universality argument:
- No-focusing in the quark-meson model with and without quantum fluctuations

LGT phase boundary and chemical freezeout

Changing system size to approach CEP ?

LGT results in 2+1 flavor QCD with physical mass spectrum

Different critical temperatures: $T_c \approx 175 MeV$ Z. Fodor et al. $T_c \approx 192 MeV$ M. Cheng et al.Different critical temperatures for different observables:Z. Fodor et al.

The nature of the 1st order chiral phase transition

$\partial P / \partial V < 0$	•	stable
$\partial P / \partial V > 0$	•	unstable
$\partial P / \partial V = 0$	•	spinodal

A-B: supercooling (symmetric phase)B-C: non-equilibrium stateC-D: superheating (broken phase)

Quark number susceptibility

• deviation from equilibrium, large fluctuations induced by instabilities

- at 1st order transition point (A, D) : χ_q is finite
- at isothermal spinodal point (B, C) : χ_q diverges and changes its sign $\frac{\partial P}{\partial V} < 0$ for stable/meta-stable state $\Rightarrow \frac{\partial P}{\partial V} > 0$ for unstable state
- in unstable region (B-C) : χ_q is finite and negative

Experimental Evidence for 1st order transition

Net-quark fluctuations on spinodals

Probe of Deconfinement: Kurtosis

S. Ejiri, F. Karsch & K.R.

HRG factorization of pressure:

$$P^{B}(T, \mu_{q}) = F(T) \cosh(3\mu_{q}/T)$$

consequently: $d_4^q / d_2^q = 9$ in HRG In ideal QGP, $d_q^4 / d_q^2 = 6 / \pi^2$

Kurtosis=Ratio of "4/2" cumulants

$$d_4^q / d_2^q = \frac{\langle (\delta N_q)^4 \rangle}{\langle (\delta N_q)^2 \rangle} - 3 \langle (\delta N_q)^2 \rangle$$

² excellent probe of deconfinement

Chiral dynamics, Kurtosis and inverse compressibility, model calculations

A peek in kurtosis appear as remnant of chiral dynamics and O(4) universality! The 2+1 flavor QCD sensitive to O(4) dynamics expected in 2-flavor QCD

Transport Coefficient near phase transition

Transport coefficients from kinetic theory

Energy momentum tensor
$$T^{\mu\nu} = \int \frac{d^{3}p}{(2\pi)^{3}} p^{\mu} p^{\nu} \frac{1}{E} [f + \overline{f}]$$

$$E^{2} = \overrightarrow{p}^{2} + M^{2}(T, \mu)$$
Assume small deviations from equilibrium $\delta f = f - f_{0}$ with $f^{-1} = \exp(E - pu \mp \mu) \pm 1$, consequently
$$\delta T^{\mu\nu} = \int \frac{d^{3}p}{(2\pi)^{3}} p^{\mu} p^{\nu} \frac{1}{E} [\delta f + \delta \overline{f}] \approx -\varsigma \delta_{ij} \partial_{k} u^{k} - \eta W_{ij}$$
bulk viscosity

Shear and bulk viscosity per entropy

Crossing the crosover transition line

Viscosity to entropy ratio

Shear

T/T_c

Bulk and shear viscosity per entropy along the chiral phase boundary

Conclusions

A non-monotonic change of the net-quark susceptibility probes the existence of CEP However in non-equilibrium: due to spinodal instabilitie the charge fluctuations diverge at 1st order critical line

=> Large fluctuations signals 1st order transition

- Kurtosis is an excellent probe of deconfinement and O(4) chiral dynamics
- No-focusing of isentrops near CEP in the chiral quarkmeson model solved within RG approach
- Under relaxation time approximation the bulk viscosity is finite at CEP and O(4) line
 => Divergence of bulk viscosity controlled by the dynamical, rather then static critical exponents

Energy dependent fluctuations & CEP

sqrt(s)

Smooth change of fluctuations with collision energy: no sign of CEP

Bulk Viscosity across the phase transition in NJL model

T/T_c

T/T_c

Critical exponents at 1st order line and CEP

