Strongly Interacting Matter: Phases and Transitions

Mark Gorenstein

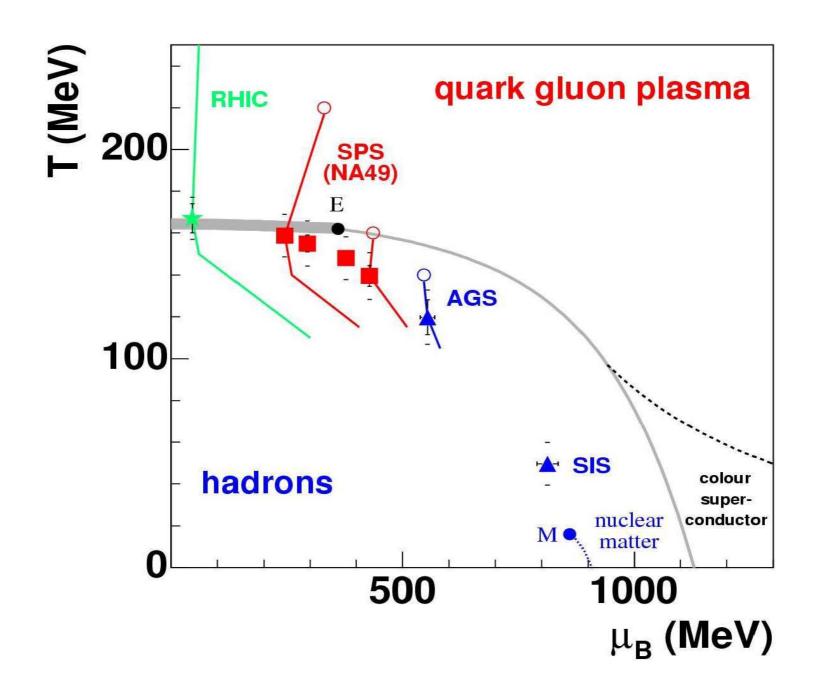
BITP, Kiev

- 1. Hagedorn Model
- 2. Phase transitions in the gas of quark-gluon bags
- 3. 1st order, 2nd order, 3rd order ...phase transitions
- 4. Crossover
- 5. Phase diagram

M.I.G, Petrov, Zinovjev, Phys. Lett. B 1981

M.I.G., Greiner, Shin Nan Yang, J. Phys. G 1999

M.I.G., Gazdzicki, Greiner, Phys. Rev. C 2005



V, **T**; m

Partition Function of the Ideal Gas:

$$Z(V,T) = \sum_{N=0}^{\infty} \frac{1}{N!} \prod_{j=1}^{N} \int \frac{V d^3 k_j}{(2\pi)^3}$$

$$\times \exp \left[-\frac{(k_j^2 + m^2)^{1/2}}{T} \right]$$

$$= \sum_{N=0}^{\infty} \frac{[V \phi(T,m)]^N}{N!} = \exp[V\phi(T,m)]$$

Particle Number Density:

$$\phi(T,m) \equiv \frac{1}{2\pi^2} \int_0^\infty k^2 dk \exp \left[-\frac{(k^2 + m^2)^{1/2}}{T} \right]$$
$$= \frac{m^2 T}{2\pi^2} K_2 \left(\frac{m}{T} \right)$$

$$\overline{N}(V,T) = V \phi(T,m) , \quad n(T) \equiv \frac{N}{V} = \phi(T,m)$$

Pressure:

$$p(T) \equiv T \frac{\ln Z(V,T)}{V} = T \phi(T,m)$$

Energy Density:

$$\varepsilon(T) \; \equiv \; T \; \frac{dp}{dT} \; - \; p(T) \; = \; T^2 \; \frac{d\phi(T,m)}{dT}$$

$$p(T) = T \sum_{i} \phi(T, m_i), \qquad \varepsilon(T) = T^2 \sum_{i} \frac{d\phi(T, m_i)}{dT}$$

$$p(T) \ = \ T \ \int_0^\infty dm \ \rho(m) \ \phi(T,m)$$

$$\varepsilon(T) = T^2 \int_0^\infty dm \ \rho(m) \ \frac{d\phi(T,m)}{dT}$$

Limiting Temperature

Hagedorn (1965), Frautschi (1971) SBM

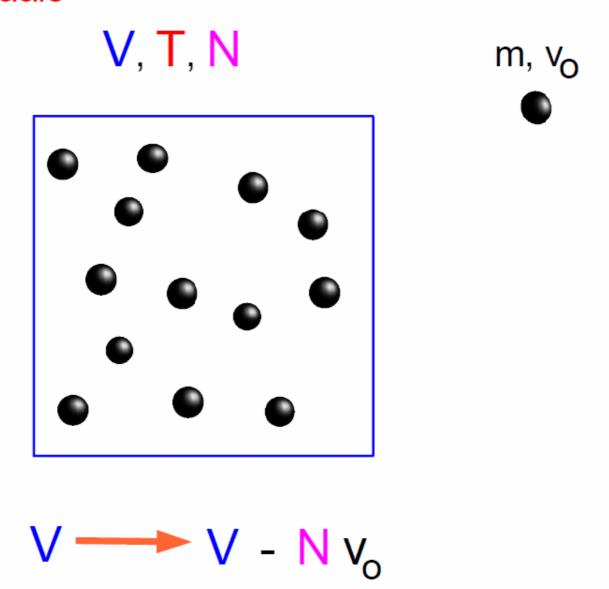
$$\rho(m)_{m\to\infty} \simeq C m^{-a} \exp(bm), \qquad b \equiv \frac{1}{T_H}$$

$$\phi(T,m) \simeq \left(\frac{mT}{2\pi}\right)^{3/2} \exp\left(-\frac{m}{T}\right)$$

$$T < T_H, \quad T \rightarrow T_H$$
:

$$\begin{array}{l} p\;,\;\varepsilon\;\to\;\infty\;,\quad a\;\leq\;\frac{5}{2}\\ \\ p\;\to\;const\;,\;\varepsilon\;\to\;\infty\;,\quad\frac{5}{2}\;\leq\;a\;\leq\;\frac{7}{2}\\ \\ p\;,\;\varepsilon\;\to\;const\;,\quad a\;>\;\frac{7}{2} \end{array}$$

van der Waals



Van der Waals repulsion: $V \to V - v_o N$

$$Z(V,T) = \sum_{N=0}^{\infty} \frac{\left[(V - v_o N) \ \phi(T,m) \right]^N}{N!} \theta(V - v_o N)$$

$$\hat{Z}(s,T) \equiv \int_0^\infty dV \exp(-sV) \ Z(V,T)$$

$$= \sum_{N=0}^\infty \frac{[\phi(T,m)]^N}{N!} \int_{v_o N}^\infty dV \exp(-sV)(V - v_o N)^N$$

$$= \sum_{N=0}^\infty \frac{[\phi(T,m)]^N}{N!} \cdot \frac{\exp(-v_o s N) \ N!}{s^{N+1}}$$

$$= [s - \exp(-v_o s)\phi(T, m)]^{-1}$$

$$\hat{Z}(s,T) \ \equiv \int_0^\infty dV \exp(-sV) \ Z(V,T)$$

Farthest-Right Singularity of the Laplase Transform:

$$Z(V,T)_{V\to\infty} \simeq \exp\left[\frac{p(T)\ V}{T}\right] \to s^*(T) = \frac{p(T)}{T}$$

$$\hat{Z}(s,T) = [s - \exp(-v_o s)\phi(T,m)]^{-1}$$

Pole Singularity:

$$s^*(T) = \exp[-v_o s^*(T)] \phi(T, m)$$

$$v_0 = 0$$

 $s^*(T) = \phi(T, m), \quad p(T) = Ts^*(T) = T\phi(T, m)$

$$Z(V,T) = \sum_{N_1=0}^{\infty} \dots \sum_{N_n=0}^{\infty} \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi(T,m_1) \right]^{N_1}}{N_1!} \dots \times \frac{\left[(V-v_1N_1 - \dots - v_nN_n) \phi($$



...
$$\times \frac{[(V - v_1 N_1 - \dots - v_n N_n) \phi(T, m_n)]^{N_n}}{N_n!}$$

$$\times \theta (V - v_1 N_1 - \dots - v_n N_n)$$

$$\sum_{j=1}^{n\to\infty} \dots \ \to \ \int_0^\infty dm dv \dots \rho(m,v)$$

$$\hat{Z}(s,T) \equiv \int_0^\infty dV \exp(-sV) \ Z(V,T)$$

Laplace Transform:

$$= [s - f(T,s)]^{-1}$$

$$f(T,s) \ = \ \int_0^\infty dm dv \ \rho(m,v) \ \exp(-vs) \ \phi(T,m)$$

Pressure:
$$p(T) = T s^*(T)$$

Farthest-Right Singularity:

$$s^*(T) = max\{s_H(T), s_Q(T)\}$$

Pole Singularity:

$$s_H(T) = f(T, s_H(T))$$

Mass-Volume Spectrum of Quark-Gluon Bags

$$\rho(m,v) \simeq C v^{\gamma} (m-Bv)^{\delta}$$

$$\times \exp \left[\frac{4}{3} \sigma_Q^{1/4} v^{1/4} (m-Bv)^{3/4} \right]$$

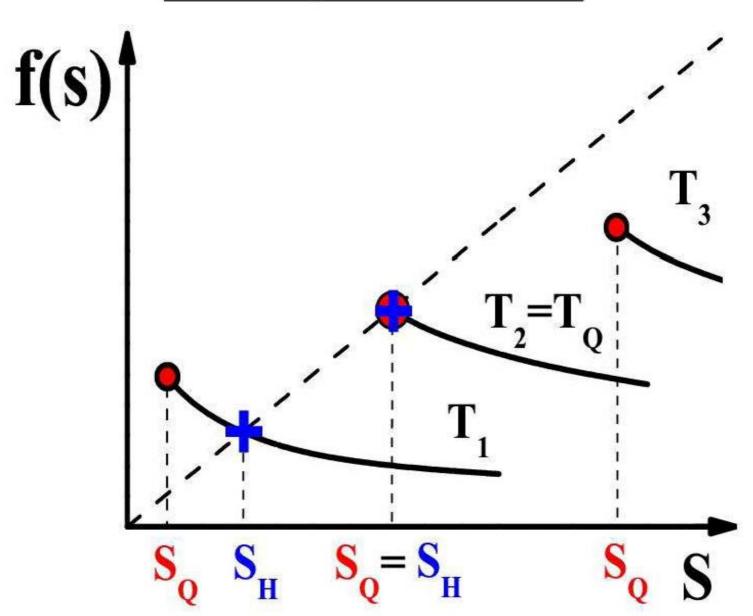
$$\sigma_Q = \frac{\pi^2}{30} \left(d_g + \frac{7}{8} d_{q\bar{q}} \right)$$

$$= \frac{\pi^2}{30} \left(2 \cdot 8 + \frac{7}{8} \cdot 2 \cdot 2 \cdot 3 \cdot 3 \right) = \frac{\pi^2}{30} \frac{95}{2}$$

$$f(T,s) \equiv f_H(T,s) + f_Q(T,s) = f_H(T,s)$$

+
$$\int_{V_o}^{\infty} dv \int_{M_o+Bv}^{\infty} dm \ \rho(m,v) \exp(-sv)\phi(T,m)$$

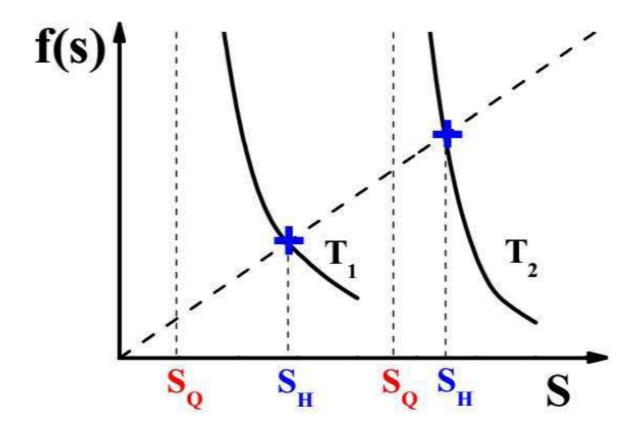
$$\gamma < -\frac{5}{4}, \qquad \delta < -\frac{7}{4}$$



To have $s^* = s_Q$ at high T one needs

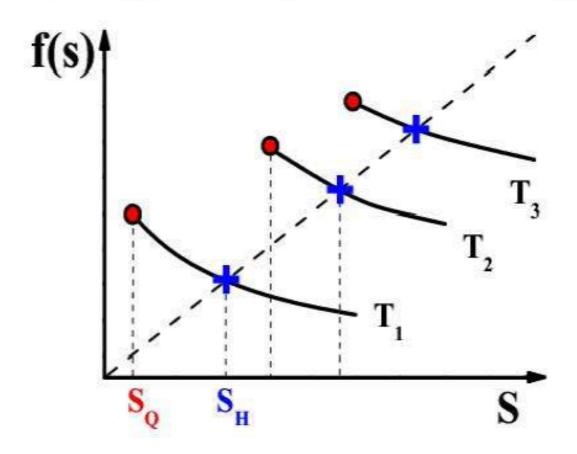
$$\underline{\gamma + \delta < -3},$$

otherwise $f(T, s_Q) = \infty$, and $s_H > s_Q$ for all T:

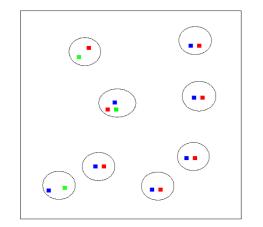


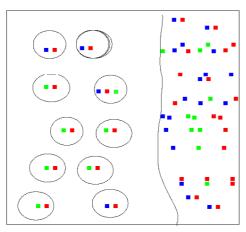
$$\delta < -\frac{7}{4},$$

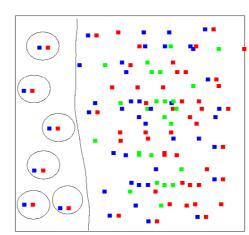
otherwise $f(T, s_Q) > s_Q$, and $s_H > s_Q$ for all T:

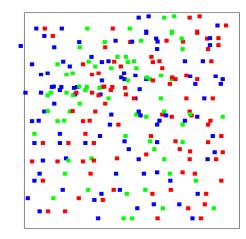


$$T = Tc$$









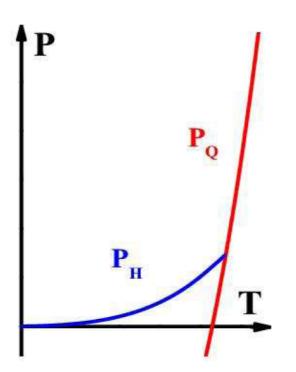
$$\alpha \equiv -(\gamma + \delta + 2)$$

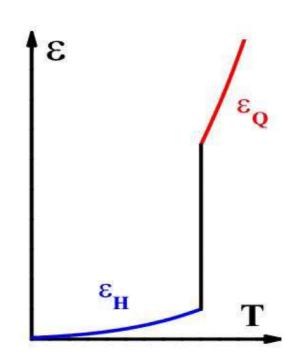
, –

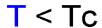
1st Order PT

$$s_{\scriptscriptstyle H}(T_{\scriptscriptstyle C}) {=} s_{\scriptscriptstyle Q}(T_{\scriptscriptstyle C})$$

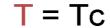
$$s_{H}'(T_{C}) < s_{Q}'(T_{C})$$

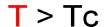


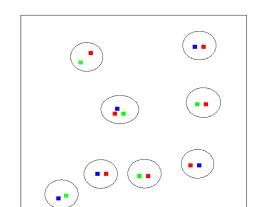


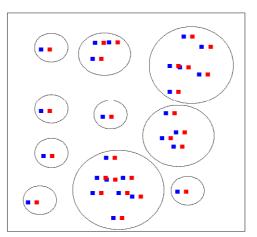


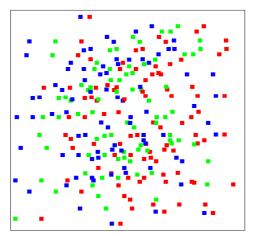
T ---> Tc

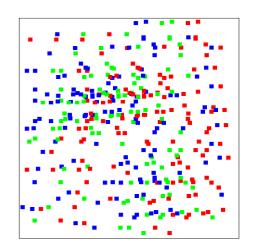












$$\alpha \equiv -(\gamma + \delta + 2)$$

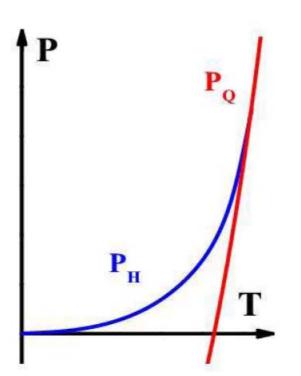
$$\frac{3}{2}$$
 < α \leq 2

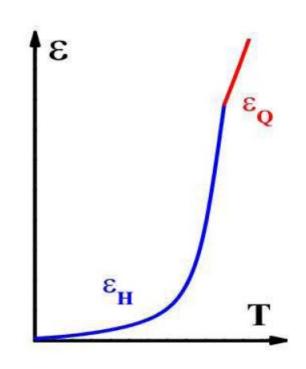
2nd Order PT

$$s_{_{\rm H}}(T_{_{\rm C}}) {=} s_{_{\rm Q}}(T_{_{\rm C}})$$

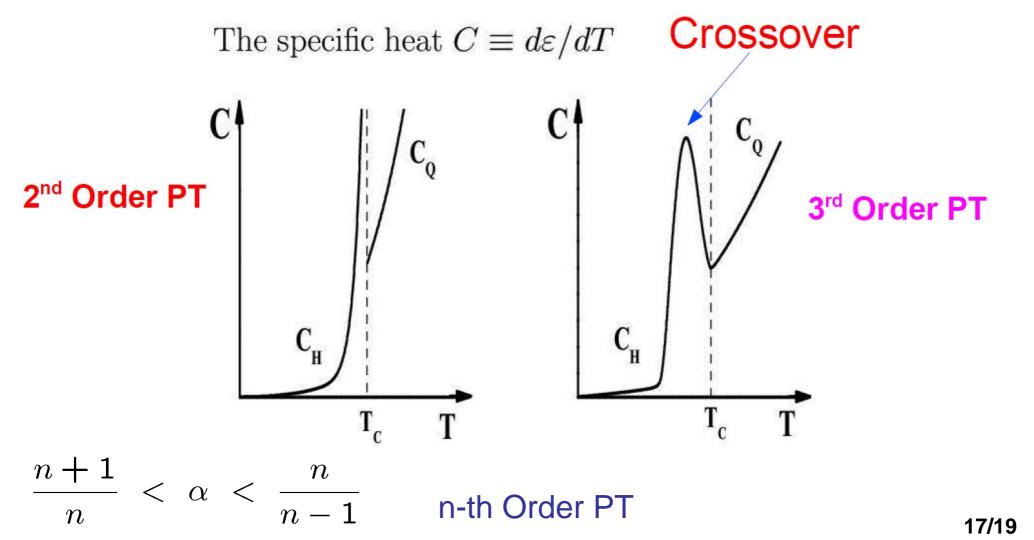
$$s_{H}'(T_C) = s_{Q}'(T_C)$$

$$s_{\scriptscriptstyle H}^{\,\prime\prime}(T_{\scriptscriptstyle C}) > s_{\scriptscriptstyle Q}^{\,\prime\prime}(T_{\scriptscriptstyle C})$$





For $4/3 \le \alpha < 3/2$ there is the 3^{rd} order PT

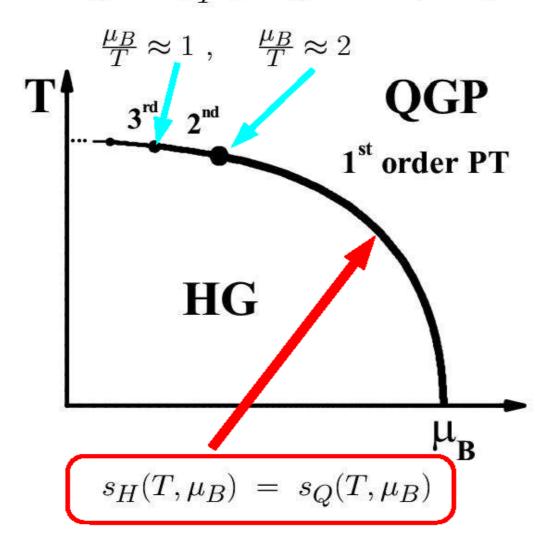


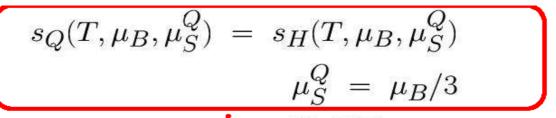
17/19

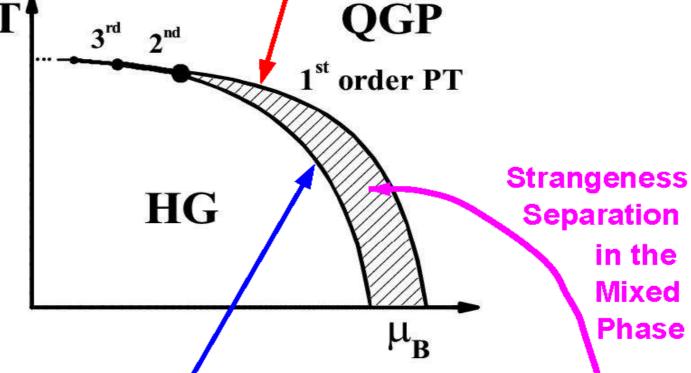
$$\alpha > 2$$
, $\frac{3}{2} \le \alpha \le 2$, $1 < \alpha \le \frac{3}{2}$

1st Order PT 2nd Order PT 3rd and Higher Order PTs

$$\alpha = \alpha_0 + \alpha_1 \frac{\mu_B}{T}, \quad \alpha_0 = 1 + \epsilon, \quad \alpha_1 \approx 0.5$$







$$s_H(T,\mu_B,\mu_S^H) \ = \ s_Q(T,\mu_B,\mu_S^H)$$

$$s_H(T, \mu_B, \mu_S) = s_Q(T, \mu_B, \mu_S)$$

$$n_S^{mix} \equiv \delta \cdot n_S^Q + (1 - \delta) \cdot n_S^H$$

Carsten Greiner et al. (1987)

Summary

- 1. Phase Transitions in the gas of quark-gluon bags
- 2.1st Order PT, 2nd Order PT, 3rd Order PT,... -- different contributions of massive Q-G bags at T=Tc
- 3. No phase transitions 'cluster' structure of the QGP
- 4. 'Critical line' of the Phase Transitions in the T-mu_B plane
- 5. Massive Q-G bags can be observed by measuring the event-by-event fluctuations