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High energy collisions from 

 nonextensive perspective 

What does it mean?.... 
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         Boltzman-Gibbs statistics → Tsallis statistics 
 q = nonextensivity parameter 
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Nonextensivity is phenomenon which is ubiquitous in all branches of science and 
very well  documented. It occurs always whenether: 
 
 
(*) there are long range correlations in the system (or „system is  small” –  like our 
Universe with respect to the gravitational  interactions) 
 
(*) there are memory effects of any kind 
 
(*) the phase-space in which system operates is limited or has fractal structure 
 
(*) there are intrinsic fluctuations in the system under consideration 
 
(*)  the process proceeds via branching phenomena (in multiplicative manner) 
 
(*)  ……………………. 
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C. Tsallis, J.Stat.Phys. 52 (1988) 479 

Tsallis distribution 

meaning of  q   ? 

BG 
 
R. Hagedorn (1965) 

Examples of mechnisms leading to  
Tsallis distribution: 
      -q-thermodynamics 
      - Superstatistics 
      - Stochastic network approach 
      - Multiplicative noise 
      - MaxEnt (Shannon entropy) 
 
        more information: 
        arXiv:1307.7855 
        AIP1558(2013)893  
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First attempts to fit the whole range of pT are from 1977 (C.Michael) (*): 

”soft”  
  (nonperturbative) 
  physics 

”hard” 
  (perturbative) 
  physics      

(*)  C.Michael and L.Vanryckeghen, J.Phys. G3 (1977) L151;   
    C.Michael, Prog. Part. Nucl. Phys. 2 (1979)1 See also:  
     
     Rediscovered as „QCD-inspired formula” (or „Hagedorn distribution”) in: 
    G. Arnison  et al. [UA1 Coll.],  Phys. Lett.  B118, 167 (1982);  
    R. Hagedorn, Riv. Nuovo Cim.  6 (10), 1 (1983).    

 It is known as „QCD-inspired Hagedorn formula”  

BUT….   a bit of history  which must be  remembered…. 
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NOTICE:    for     𝒏𝒏 =  𝟏𝟏
𝒒𝒒−𝟏𝟏

     and      𝒑𝒑𝟎𝟎 = 𝑻𝑻
𝒒𝒒−𝟏𝟏

       one recovers Tsallis 
formula. 
  

 It is known as „QCD-inspired Hagedorn formula”  
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C. Tsallis, J.Stat.Phys. 52 (1988) 479 

Tsallis distribution 

meaning of  q   ? 

BG 
 
R. Hagedorn (1965) 

 
Examples of mechnisms leading to  
Tsallis distribution: 
      -q-thermodynamics 
      - Superstatistics 
      - Stochastic network approach 
      - Multiplicative noise 
      - MaxEnt (Shannon entropy) 
 
         
more information:      arXiv:1307.7855     AIP1558(2013)893  



Details can be found , for  example,  in some our recent works: 
 
(*)    AIP1558(2013)893; On Possible Origins of Power-law Distributions 
 
(*)    PlB727(2013)163 ; Self-similarity in jet events following from pp collisions at LHC 
 
(*)    JPG(2012)095004;  On the possibility of q-scaling in high-energy production 
                                         processes; 
                     
(*)   APPB34(2012)2047;  Tsallis fits to pT  spectra  for pp collisions at LHC; 
       PRD 87(2013)114007; Tsallis fits to pT spectra and multiple hard scattering in pp 
                                             collisions at the LHC 
 
(*)    EPJA48(2012)161; Consequences of  temperature fluctuations in observables  
                                         measured in   high-energy collisions;   
       CEJP10(2012)568;  The imprints of superstatistics in multiparticle  production  
                                         processes; 
        JPG38(2011)065101;   Equivalence of volume and  temperature fluctuations in  
                                              power-law    ensembles ;  
        EPJA40(2009)299;   Power laws in elementary and heavy-ion collisions. 
 
… and  in earlier references therein …. 
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(*) observation of deviation from the 
expected exponential behaviour 
 
(*) successfully intrepreted in terms  
of cross-section fluctuation: 
 
(*) can be also fitted by: 
 
 

 
 
 
 
(*) immediate conjecture: 
      q fluctuations present in the system 

Depth distributions of starting points 
of cascades  in Pamir lead chamber 
Cosmic ray experiment  (WW, NPB 
(Proc.Suppl.)  A75 (1999) 191 
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It all started from observation of 
Long flying component in cosmic rays 
[WW, PRD50 (1994) 2318] 
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GW and ZW, PRL 84 (2000) 2770    →  q measures intrinsic (nonstatistical) 
                                                                  fluctuations in the  system 
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This is know at present as Superstatistics:  a superposition of two different 
statistics relevant to driven nonequilibrium systems with a stationary state and 
intensive parameter fluctuations [C. Beck et al., Physica A322 (2003) 267] 



q-thermodynamics 
 
This will not be the subject of my presentation but this view is reasonable and it 

was shown that nonextensive-thermodynamics satisfies all demands of the usual 

thermodynamics applied to systems that posses intrinsic fluctuations, memory 

effects, are  limited and/or nonhomogeneous etc.    Cf., for example: 
 
O.J.E.Maroney, PRE89(2009)061141 
 
T.S.Biro,  Is there a temperature?  (Springer 2011) 
 
T.S.Biro et al., JPG37(2010)094027;    PRE83(2011)061147;   
                        EPJ Web of Conf. 13 (2011)05004;    PLB718 (2012) 125. 
 
J.Cleymans et al., JPG39(2012)025006;   EPJA48(2012)160 
 
J.Rożynek, G.Wilk,   JPG36(2009)125108; EPJ Web of  Conf. 13(2011)0500 2 
 



For those interested  in more recent information see: 
 
https://indico.cern.ch/conferenceDisplay.py?confId=285968  
 

https://indico.cern.ch/conferenceDisplay.py?confId=285968
https://indico.cern.ch/conferenceDisplay.py?confId=285968
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Surprisingly Close Tsallis Fits to High Transverse  
Momentum Hadrons Produced at LHC    
- confrontation with pQCD 
 

C.-Y.Wong, G.Wilk: 
 
- Acta Phys. Polon. B43 (2012) 2047 

 
- Phys. Rev. D87 (2013) 114007  

 
- arxiv: 1309.7330v1 [hep-ph] – proc.of Low-X 2013 

 
    The Open Nuclear & Particle Physics Journal, in press 
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Phenix Coll., PRD 83, 
052004 (2011) 
 
Fig. 12 
Invariant differential 
cross sections of 
different particles 
measured in p p 
collisions at √s = 200 
GeV in various decay 
modes. 
 
q=1.1                n=10 

Example of Tsallis distribution: application to PHENIX data 
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Wong and Wilk, ActaPhysPol.B43,2047(2012) 

Tsallis distribution can describe LHC pT distributions 
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Tsallis distribution can describe LHC pT distributions 
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Notice that: 
 
Tsallis fit describes  
 
THE WHOLE RANGE OF VARIABLE pT 
 
notwithstanding the fact that they are  
believed to correspond to  
different dynamics 



Good Tsallis pT fits raise questions 

• What is the physical meaning of  n ?  
 

• If n is the power index of 1/pT
n,     then why is  n ~ 7,  

                                           whereas pQCD predicts    n ~ 4  ? 
 
• Why are there only few degrees of freedom over such a large pT  domain ? 
 
• Do multiple parton collisions play any role in modifying the power index n? 
 
• Does the hard scattering process contribute significantly to the production  
      of low-pT hadrons? 
 
• What is the origin of low-pT part of Tsallis fits ? 

 
• ……………………………………………………………………….. 
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Parton Multiple Scattering 
For the collision of a parton a with a target of A partons in sequence without centrality 
selection, the differential cT distribution is given by 
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Parton Multiple Scattering 

The contribution from the single collision dominates,  but high multiple 
collisions come  in at lower pT  and for more central collisions 

For the collision of a parton a with a target of A partons in sequence without centrality 
selection, the differential cT distribution is given by 
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Good Tsallis pT fits raise questions 

• What is the physical meaning of  n ?  
 

• If n is the power index of 1/pT
n,     then why is  n ~ 7,  

                                           whereas pQCD predicts    n ~ 4  ? 
 
• Why are there only few degrees of freedom over such a large pT  domain ? 
 
• Do multiple parton collisions play any role in modifying the power index n? 
 
• Does the hard scattering process contribute significantly to the production  
      of low-pT hadrons? 
 
• What is the origin of low-pT part of Tsallis fits ? 

 
• ……………………………………………………………………….. 
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RHS Model - The Power Index in Jet Production 

[18] D. W. Duke and J. F. Owens, Phy. Rev D30, 49 (1984). 



D0 jet data can be described by RHS model  
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ALICE and CMS jet data can be described by RHS model  

(without regularization of α(pT);  R is clustering parameter used  in  jet finding algorithms) 
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Except for the CMS data at 7 TeV that may need further re-examination, the power 

indices extracted for hadron jet production are in approximate agreement with the value of  

n=4.5  in Eq. (19) and with previous analysis in [10], indicating the approximate validity of 

the hard scattering model for jet production in hadron-hadron collisions, with the 

predominant α2
s / c4

T  parton-parton differential cross section as predicted by pQCD. 

[10] F. Arleo, S. Brodsky, D. S. Hwang, and A. M. Sickles, Phys. Rev. Lett. 105, 062002 (2010). 



Evolution from jet to hadrons 

The evolution from a jet to hadrons passes through the stages of 
 
   (i) showering (and/or fragmentation), 
 
   (ii) hadronization. 

29 
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Phenomenological Modifications for Hadron  Production 
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3

3 ασJet  
production 

(*) For the case of hadron production, it is necessary to take into account additional  

effects. Jets undergo  fragmentation and hadronization to produce the observed  

hadrons.   

(*) For example:  from the fragmentation function for a parent parton jet to fragment into 

hadrons, an observed hadron p of transverse momentum pT    can be estimated to arise (on 

the average) from the fragmentation of a parent jet  c  with transverse  

momentum  <cT > =2.3pT  [11]. 

hadrons 

[11] C. Y. Wong and G. Wilk, Phys. Rev. D87, 114007 (2013). 



Effects of showering (and/or fragmentation) on power law  
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For linear fragmentation where p=zc: 



Effects of showering (and/or fragmentation) on power law  
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The power law and power index are preserved under  p=zc  
fragmentation 

For linear fragmentation where p=zc: 
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However,  as a result of parton showering involving virtuality 

degradation, the leading hadron momentum p and the showering 

parton momentum   c    may not be linearly related and one can 

expect that 
 
 
 
 
 
 
where parameter μ describes details of virtuality degradation. As a 

consequence, the power index can be changed  under  parton 

showering. 
 

μ1c zp −=

Effects of showering (and/or fragmentation) on power law  
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After the fragmentation and showering of the parton c to hadron p, the hard-scattering cross section 
for the scattering in terms of hadron momentum pT  becomes 

Here a    is a constant relating the scales of virtuality and transverse momentum. 
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Here a    is a constant relating the scales of virtuality and transverse momentum. Therefore 
under the fragmentation    c→ 𝑝𝑝,   the hard scattering cross section for 𝐴𝐴𝐴𝐴 → 𝑝𝑝𝑝𝑝 becomes: 
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After all  this one gets power-law behavior: 
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but  it  is  not  Tsallis formula  -    low pT   behavior  is  not correct.   
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After all  this one gets power-law behavior: 
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but  it  is  not  Tsallis formula  -    low pT   behavior  is  not correct.   
 

The proposed possible remedy is   to replace the usual parameter     p0   (~𝟏𝟏 ÷ 𝟐𝟐 𝐆𝐆𝐆𝐆𝐆𝐆)     

dividing phase space into part governed by „soft  physics „    (pT  < p0 )   from that governed 

by „hard physics” ( pT ≥ p0  )     by regularizing denominator in (*),  for example by using: 
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Notice that we have just used  the form   
 
of Tsallis („Hagedorn”) formula showed 
 
at the beginning:  
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In fact, in actual calculation,  in addition to the replacement  
 
                              𝟏𝟏/𝒑𝒑𝑻𝑻 𝒏𝒏  →     𝟏𝟏/ 𝟏𝟏 +  𝒑𝒑𝑻𝑻/𝒑𝒑𝟎𝟎 

𝒏𝒏 
 
we also  regularize in similar manner the coupling constant for small values of  pT    

(following method proposed in hadron spectroscopic studies by C. Y. Wong, E. S. 

Swanson, and T. Barnes, Phy. Rev. C, 65, 014903 (2001)): 
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Experiments measure the differential yield in nonsingle-diffractive events, which in 
our case is 
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… but with quite complicated prefactor 



Analysis of hadron pT distributions 
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Comparison of the experimental data for hadron production in pp collisions at the  LHC   
with the relativistic hard scattering model results (solid and dashed curves) (a) using  
Eq. (25), with a quadratic mT dependence of the regulating function, and (b) using  
Eq. (24), with a linear mT dependence of the regulating function. In both cases regularized 
coupling constant αS  was used. 
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(*) For pp collisions at the LHC the power index extracted from hadron spectra has 

the value of n∼6 and is  slightly  greater than the power indices of n∼4-5 extracted 

from jet transverse differential cross sections.  

 

(*)  Fragmentation and showering processes increase therefore slightly the value of 

the power index n of the transverse spectra. 
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Conclusions: 

• A simple Tsallis formula can describe data with a power 
index of  n ~ 6.6 - 7.6 

 
• A power law with a power index of  n ~ 4 - 5  can describe 

the pT spectra of jets. 
 
• A regularized power law with a power index of n ~  5.5 -  6 

can describe (together with regularized coupling constant) 
the pT spectra of  hadrons for all pT . 

 
• The power index  n   becomes  larger as   a jet evolves 

into hadrons. 
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Example: Shannon entropy                                 S = - ∫f(x)ln[f(x)]dx 
leads    to: 
           (*) exponential for condition                          <x>  = const 
 
           (*) Gauss distribution for condition               <x2> = const 
           
          (*) gamma distribution for                           <ln(x)> = const 
 
            (*) Cauchy distribution for                  <ln(1+x2)>=const 
 
             …………………………………………………………………….. 
 

  Tsallis distribution from Shannon entropy 

In general:     the maximum entropy density for f(x)  satisfying constraint 
                                             ∫f(x)h(x)dx=const,  
                       where   h(x)    is some function of   x, is of the form 
                                              f(x) = exp[λ0 +λh(x)].  
                        The constants λ0 and  λ are chosen so that f(x) is normalized and 
                        satisfies the constraint. 
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  Tsallis distribution from Shannon entropy 

In general:     the maximum entropy density for f(x)  satisfying constraint 
                                             ∫f(x)h(x)dx=const,  
                       where   h(x)    is some function of   x, is of the form 
                                              f(x) = exp[λ0 +λh(x)].  
                        The constants λ0 and  λ are chosen so that f(x) is normalized and 
                        satisfies the constraint. 
 
 

 
E.Rufeil Fiori, A.Plastino,;  A Shannon-Tsallis transformation,  Physica A392, 1742 (2013): 
 
S.Presse,  K.Ghosh, J.Lee, K..A. Dill; Nonadditive Entropies Yield Probability Distributions 
with Biases notWarranted by the Data;  PRL 111, 180604 (2013) 
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  Tsallis distribution from Shannon entropy 

In general:     the maximum entropy density for f(x)  satisfying constraint 
                                             ∫f(x)h(x)dx=const,  
                       where   h(x)    is some function of   x, is of the form 
                                              f(x) = exp[λ0 +λh(x)].  
                        The constants λ0 and  λ are chosen so that f(x) is normalized and 
                        satisfies the constraint. 
 
 

 
E.Rufeil Fiori, A.Plastino,;  A Shannon-Tsallis transformation,  Physica A392, 1742 (2013): 
 
S.Presse,  K.Ghosh, J.Lee, K..A. Dill; Nonadditive Entropies Yield Probability Distributions 
with Biases notWarranted by the Data;  PRL 111, 180604 (2013) 

Important question for practitioners using Tsallis or Shannon 

approach   to describe their respective data/results:  does it mean 

that they are simply   equivalent?  
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In particular,   condition:                      <z> = z0 =(q-1)/(2-q) 
 
where                                                        z   = ln[1 – (1 – q)E/T0 ] 
 
results  in                                               f(z) = (1/z0 ) exp( - z/z0 ) 
 
 
 
 
 
 
i.e., in Tsallis distribution: 
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  Tsallis distribution from Shannon entropy 
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 Interesting: condition imposed by 
                                                                   
 
 
is natural for  the multiplicative noise  described by 
 
 
 
 
There is  connection between the kind of noise in this process  and the condition imposed in the 
MaxEnt approach: 
 
(*)  For processes described by additive noise,     dx/dt = ξ(t),      
      one has  exponential  distributions. The natural condition for them is that imposed on  
      the arithmetic mean,        <x>= c+E(ξ)t. 
 
(*)  For the multiplicative noise,      dx/dt = x𝜸𝜸(t),    
      one has a power law distribution for   which the natural condition is  that imposed on 
      the geometric mean ,    <lnx> = c+E(𝜸𝜸)𝝉𝝉. 
 

  Tsallis distribution from Shannon entropy 



For interested:     more on this subject can be learned from 
 
 
(*) http://arxiv.org/abs/cond-mat/0507414v1 
    A.Rostovtsev, On a geometric mean and power-law statistical 
                            distributions. 
 
 
(*) http://itia.ntua.gr/1127 
     S.M. Papalexiou and D. Koutsoyiannis ,      
                            Entropy maximization,   p-moments and  
                            power-type distributions in nature  
 
      
     
 
 

  Tsallis distribution from Shannon entropy 

http://arxiv.org/abs/cond-mat/0507414v1
http://itia.ntua.gr/1127
http://itia.ntua.gr/1127
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(*) Tsallis distribution (especially in the form of „QCD-inspired Hagedorn  
     distribution”)  can be  - at   least - regarded as  the handy (two   
     parameter)    parametrization of data.. 
 
(*) But it can be also associated  
 
   (i)   with the existence of some intrinsic fluctuations in the hadronizing 
          system; 
 
  (ii)   with fact that in reality we  predominantly deal with systems  of   
          interacting,   not free, particles  but still try to impose on them BG 
         statistics (distribution); 
 
  (iii)  with  fact  that our  thermal models  assume homegeneous,  
          infinite  etc.  heat  baths, which are not found in most of the  
          hadronizing systems  we consider; 
 
  (iv)   with the existence of  different scales,  branching phenomena , 
           multiplicative subprocesses – all leading to power rather than  
           exponential distributions (the best representation of which for 
           all values of relevant variables is Tsallis distribution).  
 
 
 

  Summary 
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Thank you 
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Information entropy 
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Jaynes:  finding the maximum entropy under given constraints ->  
                 the resulying probability distribution “is the least biased estimate  
                  possible on  the given information…”.  
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Rationale: 
 
(*)  Generalized entropy measures have been successfully used; why not p-moments with  
      the standard definition of entropy?  
(*)  Maximization of the BGS entropy using p-moments leads to flexible power-type  
      distributions (including the Pareto and Tsallis distributions for q = 1 and q = 2,  
      respectively).  
(*)  p-moments are simple and, for p = 0, become identical to the ordinary moments. 
(*)  They exhibit similar properties with the ln𝑥𝑥 function, and thus are suitable for  
        positively skewed RVs; additionally, compared to 𝐸𝐸(ln𝑥𝑥) they are always positive.  
 

Generalized power function and p-moments: 
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For interested:     more on this subject can be learned from 
 
 
(*) http://arxiv.org/abs/cond-mat/0507414v1 
    A.Rostovtsev, On a geometric mean and power-law statistical 
                            distributions. 
 
 
(*) http://itia.ntua.gr/1127 
     S.M. Papalexiou and D. Koutsoyiannis ,      
                            Entropy maximization,   p-moments and  
                            power-type distributions in nature  
 
      
Generalized   power function:      
 
 
p – moments of order q :   

𝑝𝑝→0
  xq 

𝑝𝑝→0
  mq  ≡ 𝐸𝐸 𝑝𝑝𝑞𝑞       classical moments 

http://arxiv.org/abs/cond-mat/0507414v1
http://itia.ntua.gr/1127
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(*) Conclusions 

 
From the examples presented here it should be  

 
realized that the widely discussed origin of Tsallis  

 
distribution as  emerging fromTsallis entropy,  

 
is by no means the only possibility.  

 
It  also arises from many  nonthermal sources without 

 
  really resorting to Tsallis entropy. 
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