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Abstract

Holography has made it possible to study the emergence of a
relativistic hydrodynamic description from a highly
non-equilibrium initial state of the strongly coupled N=4
supersymmetric Yang-Mills theory. Numerical studies suggest
that a “hydrodynamic attractor” (possibly coresponding to a
resummation of the hydrodynamic gradient expansion) exists at
very early times. The Mueller-Israel-Stuart theory of second
order hydrodynamics can be interpreted as a simple
phenomenlogical model of such an attractor.



Plan

How we use holography
New numerical simulations of boost invariant flow
A phenomenological model of the emergence of
hydrodynamics



Holography

A quantum theory of gravity can be equivalently described in
terms of a quantum field theory in one spacial dimension less.

Prime example: string theory on AdS5 is the same physical
theory as N = 4 supersymmetric Yang-Mills theory in d = 1 + 3
dimensions with gauge group SU(Nc).

In the ‘t Hooft limit (Nc � 1, λ ≡ g2Nc � 1) string theory can be
approximated by Einstein gravity.

Classical solutions of Einstein equations contain all the
information about quantum N = 4 SYM theory in this limit.



The expectation value of the energy momentum tensor
describing boost-invariant flow of a conformal fluid takes the
form

Tµν = diag(ε,p||,p⊥,p⊥)

where

p|| = −ε(τ)− τε′(τ)

p⊥ = ε(τ) +
1
2
τε′(τ)

Here the Minkowski metric is expressed in proper time –
rapidity coordinates, so

ds2 = −dτ2 + τ2dy2 + dx2
1 + dx2

2



Holography leads to the formula

ε(τ) = −3N2
c

8π
a4(τ)

where the 5-dimensional metric

ds2 = − 1
z2

(
1 + a4(τ)z4 + . . .

)
dτ2 + . . .

is a solution to Einstein equations in five dimensions.



Simulations of BIF

Numerical solutions describing the non-equilibrium (pre-hydro)
regime have been found by various groups (Chesler, Yaffe;
Heller, Janik, Witaszczyk).

Recently, a new numerical approach was developed (Heller,
MS) which makes it possible to

study large numbers of initial conditions
set initial conditions at arbitrarily small τ

This opens the door to searching for universal behaviour very
early on (even before 1st or 2nd orders in the gradient
expansion give a good account of numerical data).



How can one recognize that hydrodynamics provides a good
description at a given time?

The hydrodynamic expansion (up to third order in gradients) is
given by

εH (τ) =
3N2

cπ
2

8
Λ4

(Λτ)4/3

{
1− 2

3π
· 1

(Λτ)2/3 +
1 + 2 log(2)

18π2 · 1
(Λτ)4/3 +

+
−3 + 2π2 + 24 log(2)− 24 log2(2)

486π3 · 1
(Λτ)2 + . . .

}

One needs to compare this to ε(τ) obtained from numerics
(which will also contain contributions from non-hydrodynamic
modes).



In the case of Bjorken flow the equations of hydrodynamics
take the form:

τ

w
d
dτ

w = fH(w)

where w = τε(τ)1/4. The function fH(w) can be computed
order by order in the gradient expansion.

For N = 4 SYM one finds

fH(w) =
2
3

+
1

9πw
+

1− 2 log(2)

27π2w2 +

+
15− 2π2 − 45 log(2) + 24 log2(2)

972π3w3 + . . .



By calculating

f (w) =
τ

w
d
dτ

w

for a numerically computed ε(τ) one can check if and when
hydrodynamic behaviour emerges.

This provides a practical way of recognizing the transition to
hydrodynamics starting from a far from equilibrium initial state.

Plotting the numerically computed f (w) for randomly generated
initial conditions shows

diverse behaviour early on
convergence to hydrodynamics at late times
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yellow, red, green – 1st, 2nd, 3rd order gradient expansion

black – numerics.



These results suggest that there may exist a universal
attractor well before 1st/2nd order hydrodynamics becomes
valid (“resummed hydrodynamics”).

Early speculations about all order hydrodynamics include the
work of Shuryak and Lublinsky (2009). Also the anisotropic
hydrodynamics approach of Florkowski and Ryblewski (2010)
has a similar flavour.

It may be possible to determine this attractor by resummation
of the gradient expansion - first steps in this direction were
made by Janik, Heller, Witaszczyk (2013).

It is however very likely that at least some non-hydrodynamic
modes will have to be taken into account in any
phenomenological model. On the gravity side they correspond
to low lying quasinormal modes.



Müller-Israel-Stewart theory

The MIS theory of “second order hydrodynamics” is a standard
framework for simulating quark gluon plasma evolution.

This theory

involves non-hydrodynamic modes as well as
hydrodynamic modes;
contains hydrodynamics as a late-time attractor
includes hydrodynamic modes to all orders in the gradient
expansion;

Thus, it provides a phenomenological model of the transition to
hydrodynamics.

(Heller, Janik, MS, Witaszczyk, in preparation)



If the energy momentum tensor is

Tµν = εuµuν + pPµν + Πµν

then in conformal hydrodynamics up to 2nd order

Πµν = −ησµν + ητΠ

[
<Dσµν> +

1
3
σµν(∇·u)

]
+

+ λ1σ
<µ

λσ
ν>λ + λ2σ

<µ
λΩν>λ + λ3Ω<µ

λΩν>λ .

In MIS one treats Πµν as an additional dynamical variable
determined by the evolution equation

Πµν = −ησµν − τΠ
[
<DΠµν> +

d
d − 1

Πµν(∇·u)

]
+

λ1

η2 Π<µ
λΠν>λ − λ2

η
Π<µ

λΩν>λ + λ3Ω<µ
λΩν>λ .

(Baier, Romatschke, Son, Starinets, Stephanov 2008).



For BIF the MIS equations are

τε′(τ) = −4ε(τ)

3
+ φ(τ)

τΠ(τ)φ′(τ) =
4η(τ)

3τ
− λ1(τ)φ(τ)2

2η(τ)2 − 4τΠ(τ)φ(τ)

3τ
− φ(τ)

where φ ≡ −Πy
y .

Conformal symmetry requires that

τΠ(τ) =
CτΠ

ε(τ)1/4

λ1(τ) = Cλ1

η(τ)

ε(τ)1/4

η(τ) = Cηε(τ)3/4

where Cη,CτΠ,Cλ1 are constants (whose values for strongly
coupled N = 4 SYM are known from holography).



By a change of variables in the MIS equations one can find an
equation for the function f(w) in this theory

wCτΠf (w)f ′(w) + f (w)2
(

4CτΠ +
3wCλ1

2Cη

)
+ f (w)

(
−16CτΠ

3
−

2wCλ1

Cη
+ w

)
− 4Cη

9
+

16CτΠ

9
−

2w (Cη − Cλ1)

3Cη
= 0

Hydrodynamics should appear as a late-time attractor in this
equation. This particular solution will be denoted by fH .



Hydrodynamics of finite order is obtained as a solution
expanded in powers of 1/w .

Using the values of transport coefficients for N = 4 SYM
obtained earlier via AdS/CFT one finds

fH(w) =
2
3

+
1

9πw
+

1− log(2)

27π2w2 +
−2 + 4 log2(2)− 5 log(2)

162π3w3 + . . .

The terms corresponding to hydrodynamics up to 2nd order
match, while the third order term is different.

By looking at perturbations one can check that this is a stable
attractor at linear level.



One can see the attractor by inspection:
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Initial states may involve nonhydro modes in varying degrees.
These modes decay “exponentially” with a scale set by CτΠ.



The hydrodynamic attractor can be determined numerically by
setting appropriate initial conditions at small w .

An analytic, approximate formula can also be found by iteration:
at leading order one finds

f (w) ≈
√

9π2w2 + 12πw + 16− 8 log(2) + 9πw + 16− 8 log(2)

6(3πw + 4− 2 log(2))
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yellow, red – 1st, 2nd order hydro

green – hydro attractor; blue – MIS

dashed black – approximate formula
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yellow, red – 1st, 2nd order hydro

green – hydro attractor; blue – MIS

dashed black, red – 1st, 2nd approximation.



Conclusions

Holography provides an inspiring alternative to kinetic
theory as a playground to study hydrodynamics
“All order hydrodynamics” may be viewed as a late time
attractor in a MIS type setting
For very early times it may be possible to obtain an
effective description involving both hydrodynamic and
non-hydrodynamic modes which captures more features of
Yang-Mills plasma dynamics than MIS


