

Subthreshold production of ϕ mesons in heavy-ion collisions with FOPI

Krzysztof Piasecki for the FOPI Collaboration

Institute of Experimental Physics, University of Warsaw, Poland

- ϕ mesons in nucleus-nucleus collisions
- Production of ϕ at 1.5 .. 2A GeV: yields and slopes
- Systematics of the ϕ data
- Summary

K. Piasecki (FOPI) X Polish Workshop on Relativistic Heavy-Ion Collisions, Kielce, 15.12.2013

FOPI experimental setup

• Nearly 4π coverage

- Drift chambers: CDC, Helitron
 - ToF : Plastic Barrel, RPC

Forward: Plastic Wall, Zero Degree

Direct PID of π^{\pm} , K[±], p, d, t, ^{3,4}He

Ni+Ni @ 1.93A GeV

- □ First measurement: FOPI, 1995
- □ Trigger: 12% most central events

• Number of $\phi = 23 \pm 7 \pm 2$

- \bullet yield depends on Temperature, which was not found due to scarce statistics.
- □ But within T ∈ [70, 130] MeV, $P(\phi) = (1.2 .. 4.5) \cdot 10^{-3}$ (first estimate)

Ni+Ni @ 1.93A GeV

• ϕ yield per triggered event: (6 ± 1 ± 2) · 10⁻⁴

□ K⁻ from KaoS, central collisions

Ni+Ni @ 1.93A GeV

□ Trigger: 50% most central events

- Number of $\phi = 173$ Significance = 8.7
- ϕ yield per triggered event: (4.4 ± 0.4 ± 1.3) · 10⁻⁴

- K⁺ yield per triggered event: (3.87 ± 0.10 ± 0.12) · 10⁻²
- K⁻/K⁺ ratio (in the measurable range) (3.32 \pm 0.07 \pm 0.13) \cdot 10⁻²

$$\bullet \qquad \frac{\Phi}{K} = 34 \pm 3 \pm 11 \%$$

17 ± 2 ± 5% of K⁻ originate from ϕ decays

Al+Al @ 1.9A GeV

Trigger: 9% most central events

- Number of $\phi = 108 \pm 15$ Significance = 7.4
- ϕ yield per triggered event: (3.3 ± 0.5 ± 0.6) · 10⁻⁴

15 ± 4 % of K⁻ originate from ϕ decays

Ar + KCI @ 1.756A GeV

□ Trigger: 35% most central events

$\phi / <\pi$ excitation function

- HGM = Hadron Gas Model (statistical, equilibrium)
- UrQMD 1.3 (transport)
 - $\sqrt{S} \in (5, 200) \text{ GeV}$
 - $K^{+}K^{-} \rightarrow \phi ~(\sim 70\%)$

BUU (transport)		
Ni+Ni, √S =	2.67 GeV	
$\begin{array}{l} \rho B \rightarrow \phi B \\ B B \rightarrow \phi B B \\ \pi B \rightarrow \phi B \end{array}$	(53%) (21%) (17%)	

H.W. Barz et al. (BUU) , Nucl. Phys. A 705 (2002) 223

o and analysis of yield ratios

Ni+Ni @ 1.9A GeV :
 8 independent ratios involving
 p, d, π⁺, π⁻, K⁺, K⁻, K⁰, Λ, φ

Al+Al @ 1.9A GeV :
 8 independent ratios involving
 p, d, π⁻, K⁺, K⁻, K⁰, Λ, Σ^{*}, φ

Statistical Model

- \rightarrow Grand Canonical ensemble;
- \rightarrow For S≠0, Canonical ensemble
- → calc: THERMUS code S.Wheaton, J.Cleymans , hep-ph/0407175

SM fitting quite well

ϕ/K^{-} within the statistical model approach

T_b excitation function

Summary

At E_{beam} = 1.5 .. 2A GeV, ϕ mesons from five data sets were measured:

- FOPI: Al+Al and Ni+Ni (3 different centrality classes) @ 1.9A GeV ullet
- HADES: Ar+KCI @ 1.756A GeV

 ϕ meson yields: $(0.3 .. 1.3) \cdot 10^{-3}$ per triggered event

- \rightarrow P(ϕ) seems to scale with $\langle A_{\text{participants}} \rangle_{\text{b}}$
- $\frac{\Phi}{K^{-}} \text{ ratio seems to be stable (} \frac{1}{3}\text{) and independent from } E_{b}, <A_{part}>.$ $\rightarrow \qquad \text{About } \frac{1}{6} \text{ of } K^{-} \text{ originate from decays of } \phi$
- First insights into the ϕ phase space:
 - Inverse slopes of **(**): 85 .. 120 MeV
- Statistical model vs yield ratios \rightarrow T, μ parameters
- Excitation functions of $~~\varphi$ / K^- , φ / < $\pi\!\!>$, and T $_{_\varphi}$

Backup slides

Strangeness production and absorption

	K +	K-	φ
Production	$BB \rightarrow BYK^+$	$BB \rightarrow BBK^{+}K^{-}$	$BB \rightarrow BB\phi$
(primary)	$T_{pp \rightarrow pAK^+} = 1.58 \text{ GeV}$	$T_{pp \rightarrow ppK^{+}K^{-}} = 2.5 \text{ GeV}$	$T_{\rho\rho \rightarrow \rho\rho K+K-} = 2.6 \ GeV$
Production (secondary)	$\pi B \rightarrow Y K^{+}$	$\begin{array}{l} \pi Y \rightarrow (\Sigma^* \rightarrow) \ BK^- \\ BY \rightarrow NK^-\Lambda \\ BY \rightarrow BBK^- \\ \pi B \rightarrow BK^+K^- \\ \varphi \rightarrow K^+K^- \end{array}$	$\pi B \to B\phi$ $\rho B \to B\phi$ $\pi N^* \to N\phi$ $\rho \pi \to \phi$ $K^+ K^- \to \phi \text{ negligible}$
Absorption	$K^{+}Y \rightarrow \pi B$	$K^{-}B \rightarrow \pi Y$	$\begin{array}{l} \varphi N \rightarrow K \Lambda \\ \varphi N \rightarrow \varphi N \end{array}$
Elastic scat.	$K^{+}B \leftrightarrow K^{+} B$	$K^{-}B \leftrightarrow K^{-}B$	
(char. exch.)	$K^{+}n \leftrightarrow K^{0} p$	$K^{-}p \leftrightarrow \overline{K}^{0}n$	

Yields fromNi + Ni (1.93 GeV)B + B
$$3.5 \times 10^{-4}$$
 $\pi + B$ 2.9×10^{-4} $\rho + B$ 8.9×10^{-4} $\pi + \rho$ 1.6×10^{-4} $\pi + N(1520)$ 0.5×10^{-4} Total yield 1.7×10^{-3}

H.W. Barz et al. (BUU) , Nucl. Phys. A 705 (2002) 223

 $[\mathsf{B}]=p,\,n,\,N,\,N^*,\,\Delta$

 $[\mathsf{Y}]=\Lambda,\, \Sigma$

Examples of mixing of different sources of K-

• ϕ influences investigation of U_{KN} potential

• K⁻ flow and ϕ flow mix together

First \phi's from Ni+Ni : 1995 session

- Ni+Ni @ 1.93A GeV (A. Mangiarotti)
 - → Trig: 12% most centr. ($<A_{part}>=86$) → $N_{\phi} = 23 \pm 7 \pm 2$

 $\rightarrow P_{\phi}$ / collision : depends on T_{ϕ}

 T_{ϕ} = 130 MeV \rightarrow (**1.2** ± 0.4 ± 0.6) · **10**⁻³

Phase space of \phi mesons

Freeze-out in phase diagram

K-/K+ ratio for Ni+Ni from FOPI and KaoS

M. Menzel et al. (KaoS), Phys Lett B 495 (2000) 26

Azimuthal anisotropy of Kaons from Ni+Ni @ 1.93A GeV

