Forward-backward multiplicity correlations in a superposition approach

Adam Olszewski

Jan Kochanowski University, Kielce

X-th Polish Workshop on Relativistic Heavy-Ion Collisions
Unreasonable effectiveness of statistical approaches to high-energy collisions,
13-15 December 2013, Kielce, Poland
[based on AO \& W. Broniowski, PRC 88 (2013) 044913, arXiv:1303.5280v2]

Introduction

F-B correlations with wide rapidity separation provide information on the earliest stages of the collision
[1] B. Back et al. (PHOBOS Collaboration), Phys. Rev. C 74,011901 (2006)
[2] T. J. Tarnowsky, Ph.D thesis, Purdue University, 2008
[3] B. Abelev et al. (STAR Collaboration), Phys. Rev. Lett. 103, 172301 (2009)
[4] P. Brogueira and J. Dias de Deus, Phys. Lett. B 653, 202 (2007)
[5] T. Lappi and L. McLerran, Nucl. Phys. A 832, 330 (2010)
[6] A. Bzdak, Phys. Rev. C 85, 051901 (2012)
[7] A. Bialas, J. Phys. G 35, 044053 (2008)
[8] A. Bialas and K. Zalewski, Phys. Rev. C 82, 034911 (2010)
[9] M. Dyndal, M.Sc thesis, AGH 2012

Introduction

F-B correlations with wide rapidity separation provide information on the earliest stages of the collision

- F-B multiplicity correlation measured by STAR $\mathrm{Cu}+\mathrm{Cu}$ collaboration for $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{N N}}=200 \mathrm{GeV}$, at RHIC $[1,2,3]$
[1] B. Back et al. (PHOBOS Collaboration), Phys. Rev. C 74,011901 (2006)
[2] T. J. Tarnowsky, Ph.D thesis, Purdue University, 2008
[3] B. Abelev et al. (STAR Collaboration), Phys. Rev. Lett. 103, 172301 (2009)
[4] P. Brogueira and J. Dias de Deus, Phys. Lett. B 653, 202 (2007)
[5] T. Lappi and L. McLerran, Nucl. Phys. A 832, 330 (2010)
[6] A. Bzdak, Phys. Rev. C 85, 051901 (2012)
[7] A. Bialas, J. Phys. G 35, 044053 (2008)
[8] A. Bialas and K. Zalewski, Phys. Rev. C 82, 034911 (2010)
[9] M. Dyndal, M.Sc thesis, AGH 2012

Introduction

F-B correlations with wide rapidity separation provide information on the earliest stages of the collision

- F-B multiplicity correlation measured by STAR $\mathrm{Cu}+\mathrm{Cu}$ collaboration for $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{N N}}=200 \mathrm{GeV}$, at RHIC $[1,2,3]$
- Were followed with theoretical studies [4,5,6,7,8]
[1] B. Back et al. (PHOBOS Collaboration), Phys. Rev. C 74,011901 (2006)
[2] T. J. Tarnowsky, Ph.D thesis, Purdue University, 2008
[3] B. Abelev et al. (STAR Collaboration), Phys. Rev. Lett. 103, 172301 (2009)
[4] P. Brogueira and J. Dias de Deus, Phys. Lett. B 653, 202 (2007)
[5] T. Lappi and L. McLerran, Nucl. Phys. A 832, 330 (2010)
[6] A. Bzdak, Phys. Rev. C 85, 051901 (2012)
[7] A. Bialas, J. Phys. G 35, 044053 (2008)
[8] A. Bialas and K. Zalewski, Phys. Rev. C 82, 034911 (2010)
[9] M. Dyndal, M.Sc thesis, AGH 2012

Introduction

F-B correlations with wide rapidity separation provide information on the earliest stages of the collision

- F-B multiplicity correlation measured by STAR $\mathrm{Cu}+\mathrm{Cu}$ collaboration for $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{N N}}=200 \mathrm{GeV}$, at RHIC $[1,2,3]$
- Were followed with theoretical studies [4,5,6,7,8]
- F-B multiplicity correlation measured by ATLAS collaboration for $\mathrm{Pb}+\mathrm{Pb}$ at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$, at LHC [9]
[1] B. Back et al. (PHOBOS Collaboration), Phys. Rev. C 74,011901 (2006)
[2] T. J. Tarnowsky, Ph.D thesis, Purdue University, 2008
[3] B. Abelev et al. (STAR Collaboration), Phys. Rev. Lett. 103, 172301 (2009)
[4] P. Brogueira and J. Dias de Deus, Phys. Lett. B 653, 202 (2007)
[5] T. Lappi and L. McLerran, Nucl. Phys. A 832, 330 (2010)
[6] A. Bzdak, Phys. Rev. C 85, 051901 (2012)
[7] A. Bialas, J. Phys. G 35, 044053 (2008)
[8] A. Bialas and K. Zalewski, Phys. Rev. C 82, 034911 (2010)
[9] M. Dyndal, M.Sc thesis, AGH 2012

Outline

- Three stage superposition model

Outline

- Three stage superposition model
- Comparison to LHC
- Glauber model analysis
(0) Model independent analysis

Concept of the sources

- Two colliding nuclei in the transverse plane

Concept of the sources

- Two colliding nuclei in the transverse plane
- Nucleons create sources

Concept of the sources

- Two colliding nuclei in the transverse plane
- Nucleons create sources

- Sources are wounded nucleons or binary collisions

Concept of the sources

- Two colliding nuclei in the transverse plane
- Nucleons create sources
- Sources are wounded nucleons or binary collisions

A possible simple 3D picture:

Concept of the sources

- Two colliding nuclei in the transverse plane
- Nucleons create sources
- Sources are wounded nucleons or binary collisions

A possible simple 3D picture:

- The concept of the longitudinal strings (fluxtubes)

Concept of the sources

- Two colliding nuclei in the transverse plane
- Nucleons create sources
- Sources are wounded nucleons or binary collisions

A possible simple 3D picture:

- The concept of the longitudinal strings (fluxtubes)
- Number of fluxtubes increases with centrality

fluxtubes

Concept of the sources

- Two colliding nuclei in the transverse plane
- Nucleons create sources
- Sources are wounded nucleons or binary collisions

A possible simple 3D picture:

- The concept of the longitudinal strings (fluxtubes)
- Number of fluxtubes increases with centrality
- We assume well separated F and B rapidity bins
- η corresponds to spatial rapidity

$$
\eta=\frac{1}{2} \ln \left(\frac{|\mathbf{p}|+p_{L}}{|\mathbf{p}|-p_{L}}\right)
$$

Concept of the sources

- Two colliding nuclei in the transverse plane
- Nucleons create sources
- Sources are wounded nucleons or binary collisions

A possible simple 3D picture:

- The concept of the longitudinal strings (fluxtubes)
- Number of fluxtubes increases with centrality
- We assume well separated F and B rapidity bins
- η corresponds to spatial rapidity

$$
\eta=\frac{1}{2} \ln \left(\frac{|\mathbf{p}|+p_{L}}{|\mathbf{p}|-p_{L}}\right)
$$

Hypothesis of maximum F-B correlations

Superposition model

"Statistical evolution" of the fireball

Many successful models are based on the three stage approach

"Statistical evolution" of the fireball

Many successful models are based on the three stage approach

- initial tubes extend along the f-b range

"Statistical evolution" of the fireball

Many successful models are based on the three stage approach

- initial tubes extend along the f-b range
- partons formed from braking fluxtubes

"Statistical evolution" of the fireball

Many successful models are based on the three stage approach

- initial tubes extend along the f-b range
- partons formed from braking fluxtubes
- partons with the same distribution

"Statistical evolution" of the fireball

Many successful models are based on the three stage approach

- initial tubes extend along the f-b range
- partons formed from braking fluxtubes
- partons with the same distribution
- deterministic evolution

"Statistical evolution" of the fireball

Many successful models are based on the three stage approach

- initial tubes extend along the f-b range
- partons formed from braking fluxtubes
- partons with the same distribution
- deterministic evolution
- creation of the fluid sources

"Statistical evolution" of the fireball

Many successful models are based on the three stage approach

"Statistical evolution" of the fireball

Many successful models are based on the three stage approach

Initial phase

- The production occurs from each source in the same universal manner

Initial phase

- The production occurs from each source in the same universal manner

$$
p_{A}=\sum_{i=1}^{s_{\mathbf{A}}} \mu_{i}, \quad A=F, B
$$

p_{A} - number of partons, s_{A} - number of sources, μ_{i} - number of partons from ith source

Initial phase

- The production occurs from each source in the same universal manner

$$
p_{A}=\sum_{i=1}^{s_{A}} \mu_{i}, \quad A=F, B
$$

p_{A} - number of partons, s_{A} - number of sources, μ_{i} - number of partons from ith source

- Distribution of μ is universal \longrightarrow independence from cell location

Initial phase

- The production occurs from each source in the same universal manner

$$
p_{A}=\sum_{i=1}^{s_{\mathbf{A}}} \mu_{i}, \quad A=F, B
$$

p_{A} - number of partons, s_{A} - number of sources, μ_{i} - number of partons from ith source

- Distribution of μ is universal \longrightarrow independence from cell location
- Using superposition model \longrightarrow well known formulas

$$
S \xrightarrow{\text { init.production }} p
$$

$$
\begin{aligned}
\left\langle p_{A}\right\rangle & =\langle\mu\rangle\left\langle s_{A}\right\rangle \\
\operatorname{var}\left(p_{A}\right) & =\operatorname{var}(\mu)\left\langle s_{A}\right\rangle+\langle\mu\rangle^{2} \operatorname{var}\left(s_{A}\right) \\
\operatorname{cov}\left(p_{F}, p_{B}\right) & =\langle\mu\rangle^{2} \operatorname{cov}\left(s_{F}, s_{B}\right)
\end{aligned}
$$

Deterministic hydrodynamics

- The density of sources $\mathrm{p} \longrightarrow$ the initial condition for hydro

Deterministic hydrodynamics

- The density of sources $p \longrightarrow$ the initial condition for hydro
- Initially p sources yields h sources at freeze-out

Deterministic hydrodynamics

- The density of sources $p \longrightarrow$ the initial condition for hydro
- Initially p sources yields h sources at freeze-out
- When fluctuations are not too large \longrightarrow

$$
h=t_{0}\langle p\rangle+t_{1}(p-\langle p\rangle)+\mathcal{O}\left((p-\langle p\rangle)^{2}\right)
$$

t_{i} 's depend on properties of hydrodynamics

Deterministic hydrodynamics

- The density of sources $p \longrightarrow$ the initial condition for hydro
- Initially p sources yields h sources at freeze-out
- When fluctuations are not too large \longrightarrow

$$
h=t_{0}\langle p\rangle+t_{1}(p-\langle p\rangle)+\mathcal{O}\left((p-\langle p\rangle)^{2}\right)
$$

t_{i} 's depend on properties of hydrodynamics

- The hydrodynamics is complicated but deterministic

Deterministic hydrodynamics

- The density of sources $\mathrm{p} \longrightarrow$ the initial condition for hydro
- Initially p sources yields h sources at freeze-out
- When fluctuations are not too large \longrightarrow

$$
h=t_{0}\langle p\rangle+t_{1}(p-\langle p\rangle)+\mathcal{O}\left((p-\langle p\rangle)^{2}\right)
$$

t_{i} 's depend on properties of hydrodynamics

- The hydrodynamics is complicated but deterministic

$$
\begin{aligned}
p & \xrightarrow{\text { hydro }} h \\
\left\langle h_{A}\right\rangle & =t_{0}\left\langle p_{A}\right\rangle \\
\operatorname{var}\left(h_{A}\right) & =t_{1}^{2} \operatorname{var}\left(p_{A}\right) \\
\operatorname{cov}\left(h_{F}, h_{B}\right) & =t_{1}^{2} \operatorname{cov}\left(p_{F}, p_{B}\right)
\end{aligned}
$$

\longleftarrow Formulas link statistical properties
of initial partons and hydrodynamics sources

Statistical hadronization

- Cell emits n hadrons into a region of phase space with some statistical distribution superimposed over h.

$$
n_{A}=\sum_{i=1}^{h_{A}} m_{i}, \quad A=F, B
$$

n_{A} - number of hadrons, h_{A} - number of sources, m_{i} - number of hadrons from ith source

Statistical hadronization

- Cell emits n hadrons into a region of phase space with some statistical distribution superimposed over h.

$$
n_{A}=\sum_{i=1}^{h_{A}} m_{i}, \quad A=F, B
$$

n_{A} - number of hadrons, h_{A} - number of sources, m_{i} - number of hadrons from ith source

- The distribution of m is universal

Statistical hadronization

- Cell emits n hadrons into a region of phase space with some statistical distribution superimposed over h.

$$
n_{A}=\sum_{i=1}^{h_{A}} m_{i}, \quad A=F, B
$$

n_{A} - number of hadrons, h_{A} - number of sources, m_{i} - number of hadrons from ith source

- The distribution of m is universal
- Assumption of not too much particle interchange between neighboring cells (e.g., resonance decays)

Statistical hadronization

- Cell emits n hadrons into a region of phase space with some statistical distribution superimposed over h.

$$
n_{A}=\sum_{i=1}^{h_{A}} m_{i}, \quad A=F, B
$$

n_{A} - number of hadrons, h_{A} - number of sources, m_{i} - number of hadrons from ith source

- The distribution of m is universal
- Assumption of not too much particle interchange between neighboring cells (e.g., resonance decays)

$$
\begin{aligned}
& h \xrightarrow{\text { hadronization }} n \\
\left\langle n_{A}\right\rangle & =\langle m\rangle\left\langle h_{A}\right\rangle \\
\operatorname{var}\left(n_{A}\right) & =\operatorname{var}(m)\left\langle h_{A}\right\rangle+\langle m\rangle^{2} \operatorname{var}\left(h_{A}\right) \\
\operatorname{cov}\left(n_{F}, n_{B}\right) & =\langle m\rangle^{2} \operatorname{cov}\left(h_{F}, h_{B}\right)
\end{aligned}
$$

Final relations

To summarize

$$
s \xrightarrow{\text { init.production }} p \xrightarrow{\text { hydro }} h \xrightarrow{\text { hadronization }} n
$$

Final relations

To summarize

$$
s \xrightarrow{\text { init.production }} p \xrightarrow{\text { hydro }} h \xrightarrow{\text { hadronization }} n
$$

Joining all stages

$$
\begin{aligned}
\left\langle n_{A}\right\rangle & =\alpha\left\langle s_{A}\right\rangle \\
\operatorname{var}\left(n_{A}\right) & =\beta\left\langle s_{A}\right\rangle+\gamma \operatorname{var}\left(s_{A}\right) \\
\operatorname{cov}\left(n_{F}, n_{B}\right) & =\gamma \operatorname{cov}\left(s_{F}, s_{B}\right)
\end{aligned}
$$

Final relations

To summarize

$$
s \xrightarrow{\text { init.production }} p \xrightarrow{\text { hydro }} h \stackrel{\text { hadronization }}{\longrightarrow} n
$$

Joining all stages

$$
s \xrightarrow{3 \text { stage }} n
$$

$$
\begin{aligned}
\left\langle n_{A}\right\rangle & =\alpha\left\langle s_{A}\right\rangle \\
\operatorname{var}\left(n_{A}\right) & =\beta\left\langle s_{A}\right\rangle+\gamma \operatorname{var}\left(s_{A}\right) \\
\operatorname{cov}\left(n_{F}, n_{B}\right) & =\gamma \operatorname{cov}\left(s_{F}, s_{B}\right)
\end{aligned}
$$

$$
\alpha=t_{0}\langle\mu\rangle\langle m\rangle, \quad \beta=t_{0}\langle\mu\rangle \operatorname{var}(m)+t_{1}^{2}\langle m\rangle^{2} \operatorname{var}(\mu), \quad \gamma=t_{1}^{2}\langle\mu\rangle^{2}\langle m\rangle^{2}
$$

Final relations

To summarize

$$
s \xrightarrow{\text { init.production }} p \xrightarrow{\text { hydro }} h \stackrel{\text { hadronization }}{\longrightarrow} n
$$

Joining all stages

$$
s \xrightarrow{3 \text { stage }} n
$$

$$
\begin{aligned}
\left\langle n_{A}\right\rangle & =\alpha\left\langle s_{A}\right\rangle \\
\operatorname{var}\left(n_{A}\right) & =\beta\left\langle s_{A}\right\rangle+\gamma \operatorname{var}\left(s_{A}\right) \\
\operatorname{cov}\left(n_{F}, n_{B}\right) & =\gamma \operatorname{cov}\left(s_{F}, s_{B}\right)
\end{aligned}
$$

$$
\alpha=t_{0}\langle\mu\rangle\langle m\rangle, \quad \beta=t_{0}\langle\mu\rangle \operatorname{var}(m)+t_{1}^{2}\langle m\rangle^{2} \operatorname{var}(\mu), \quad \gamma=t_{1}^{2}\langle\mu\rangle^{2}\langle m\rangle^{2}
$$

- The importance of $\gamma \longrightarrow$ occurs with variance and covariance

Comparison to LHC

Mixed model

- Wounded nucleon [1] with binary collision [2] \rightarrow Mixed model [3]
[1] A. Bialas, M. Bleszynski and W. Czyz, Nucl. Phys. B111 (1976) 461
[2] PHOBOS, B. B. Back et al., Phys. Rev. C65 (2002) 031901 and C70 (2004) 021902
[3] D. Kharzeev and M.Nardi, Phys. Lett. B 507 (2001) 121
[4] W. Broniowski, M. Rybczynski, and P. Bozek, Comput. Phys. Commun. 180, 69 (2009)

Mixed model

- Wounded nucleon [1] with binary collision [2] \rightarrow Mixed model [3]
- We obtain number of sources

$$
s_{A}=\frac{1}{2}(1-a) s_{\mathrm{w}}+a \mathrm{~s}_{\mathrm{bin}}
$$

s_{w} - number of wounded nucleons
$\mathrm{s}_{\text {bin }}$ - number of binary collisions
a - probability of binary collision
[1] A. Bialas, M. Bleszynski and W. Czyz, Nucl. Phys. B111 (1976) 461
[2] PHOBOS, B. B. Back et al., Phys. Rev. C65 (2002) 031901 and C70 (2004) 021902
[3] D. Kharzeev and M.Nardi, Phys. Lett. B 507 (2001) 121
[4] W. Broniowski, M. Rybczynski, and P. Bozek, Comput. Phys. Commun. 180, 69 (2009)

Mixed model

- Wounded nucleon [1] with binary collision [2] \rightarrow Mixed model [3]
- We obtain number of sources

$$
s_{A}=\frac{1}{2}(1-a) s_{w}+a s_{b i n}
$$

- Model as implemented in GLISSANDO (GLauber Initial-State Simulation AND mOre...) [4]
s_{w} - number of wounded nucleons
$\mathrm{s}_{\mathrm{bin}}$ - number of binary collisions
a - probability of binary collision
[1] A. Bialas, M. Bleszynski and W. Czyz, Nucl. Phys. B111 (1976) 461
[2] PHOBOS, B. B. Back et al., Phys. Rev. C65 (2002) 031901 and C70 (2004) 021902
[3] D. Kharzeev and M.Nardi, Phys. Lett. B 507 (2001) 121
[4] W. Broniowski, M. Rybczynski, and P. Bozek, Comput. Phys. Commun. 180, 69 (2009)

Mixed model

- Wounded nucleon [1] with binary collision [2] \rightarrow Mixed model [3]
- We obtain number of sources

$$
s_{A}=\frac{1}{2}(1-a) s_{w}+a s_{b i n}
$$

- Model as implemented in GLISSANDO (GLauber Initial-State Simulation AND mOre...) [4]
- Mixing parameter $\longrightarrow a=11 \%$
s_{w} - number of wounded nucleons
$\mathrm{s}_{\mathrm{bin}}$ - number of binary collisions
a - probability of binary collision
[1] A. Bialas, M. Bleszynski and W. Czyz, Nucl. Phys. B111 (1976) 461
[2] PHOBOS, B. B. Back et al., Phys. Rev. C65 (2002) 031901 and C70 (2004) 021902
[3] D. Kharzeev and M.Nardi, Phys. Lett. B 507 (2001) 121
[4] W. Broniowski, M. Rybczynski, and P. Bozek, Comput. Phys. Commun. 180, 69 (2009)

Mixed model

- Wounded nucleon [1] with binary collision [2] \rightarrow Mixed model [3]
- We obtain number of sources

$$
s_{A}=\frac{1}{2}(1-a) s_{w}+a s_{b i n}
$$

s_{w} - number of wounded nucleons
$\mathrm{s}_{\mathrm{bin}}$ - number of binary collisions
a - probability of binary collision

- Model as implemented in GLISSANDO (GLauber Initial-State Simulation AND mOre...) [4]
- Mixing parameter $\longrightarrow a=11 \%$
- Inelastic cross section $\longrightarrow \sigma_{N N}^{\text {inel }}=65 \mathrm{mb}$
[1] A. Bialas, M. Bleszynski and W. Czyz, Nucl. Phys. B111 (1976) 461
[2] PHOBOS, B. B. Back et al., Phys. Rev. C65 (2002) 031901 and C70 (2004) 021902
[3] D. Kharzeev and M.Nardi, Phys. Lett. B 507 (2001) 121
[4] W. Broniowski, M. Rybczynski, and P. Bozek, Comput. Phys. Commun. 180, 69 (2009)

Methodology and results

Basic methodology:

Methodology and results

Basic methodology:

- obtain mean and variance in F and B from GLISSANDO

Methodology and results

Basic methodology:

- obtain mean and variance in F and B from GLISSANDO
- fit the parameters α, β, γ to the experiment

Methodology and results

Basic methodology:

- obtain mean and variance in F and B from GLISSANDO
- fit the parameters α, β, γ to the experiment
- calculate theoretical values of statistical properties

Methodology and results

Basic methodology:

- obtain mean and variance in F and B from GLISSANDO
- fit the parameters α, β, γ to the experiment
- calculate theoretical values of statistical properties

Mean

$$
\left\langle n_{A}\right\rangle=\alpha\left\langle s_{A}\right\rangle
$$

Variance

Variance

The α, β, γ practically independent of bin separation $\Delta \eta$

$$
\operatorname{var}\left(n_{A}\right)=\beta\left\langle s_{A}\right\rangle+\gamma \operatorname{var}\left(s_{A}\right)
$$

Covariance

Covariance prediction

We don't fit anything, but use already fitted (test of consistency) γ

$$
\begin{aligned}
& \operatorname{cov}\left(n_{F}, n_{B}\right)=\gamma \operatorname{cov}\left(s_{F}, s_{B}\right)=\rho\left(s_{F}, s_{B}\right) \gamma \operatorname{var}\left(s_{A}\right) \\
& \operatorname{cov}\left(n_{F}, n_{B}\right)=\gamma \operatorname{var}\left(s_{A}\right) \text { (maximum correlated sources) }
\end{aligned}
$$

F-b multiplicity correlation

Correlation

$$
\rho\left(n_{F}, n_{B}\right)=\frac{\operatorname{cov}\left(n_{F}, n_{B}\right)}{\operatorname{var}\left(n_{A}\right)} \omega\left(s_{A}\right)=\frac{\operatorname{var}\left(s_{A}\right)}{\left\langle s_{A}\right\rangle}
$$

$$
\rho\left(n_{F}, n_{B}\right)=\frac{\rho\left(s_{F}, s_{B}\right)}{1+\beta / \gamma \omega\left(s_{A}\right)}
$$

Hydrodynamics

We can get information on hydrodynamics from statistical features of mean and covariance

Hydrodynamics

We can get information on hydrodynamics from statistical features of mean and covariance
Consider parameters from model

$$
\begin{aligned}
\alpha & =t_{0}\langle\mu\rangle\langle m\rangle \\
\gamma & =t_{1}^{2}\langle\mu\rangle^{2}\langle m\rangle^{2}
\end{aligned}
$$

Hydrodynamics

We can get information on hydrodynamics from statistical features of mean and covariance
Consider parameters from model

$$
\begin{aligned}
\alpha & =t_{0}\langle\mu\rangle\langle m\rangle \\
\gamma & =t_{1}^{2}\langle\mu\rangle^{2}\langle m\rangle^{2}
\end{aligned}
$$

$$
\frac{\alpha^{2}}{\gamma}=\frac{t_{0}}{t_{1}} \Longrightarrow t_{0} \simeq 0.9 t_{1}
$$

Hydrodynamics

We can get information on hydrodynamics from statistical features of mean and covariance
Consider parameters from model

$$
\begin{aligned}
\alpha & =t_{0}\langle\mu\rangle\langle m\rangle \\
\gamma & =t_{1}^{2}\langle\mu\rangle^{2}\langle m\rangle^{2}
\end{aligned}
$$

Verification of two possibilities

- Hydrodynamic growth is faster than linear function

Hydrodynamics

We can get information on hydrodynamics from statistical features of mean and covariance
Consider parameters from model

$$
\begin{aligned}
\alpha & =t_{0}\langle\mu\rangle\langle m\rangle \\
\gamma & =t_{1}^{2}\langle\mu\rangle^{2}\langle m\rangle^{2}
\end{aligned}
$$

Verification of two possibilities

- Hydrodynamic growth is faster than linear function
- Nonlinearity of hydrodynamics

Model independent f-b initial sources correlation

Correlations prediction

- Formula use only measured quantities (no Glauber model)
- Using only one free parameter \longrightarrow maximum correlated sources

$$
\delta=\beta / \alpha(\text { model parameter }), \quad \rho\left(s_{F}, s_{B}\right)=\frac{\rho\left(n_{F}, n_{B}\right)}{1-\delta / \omega\left(n_{A}\right)}
$$

Conclusions

Conclusions

- Simple formulas linking the statistical properties of the F-B correlations in the data and in the original sources have been derived in the three-stage model. Together with the Glauber model for the sources leads to natural description of the early LHC data

Conclusions

- Simple formulas linking the statistical properties of the F-B correlations in the data and in the original sources have been derived in the three-stage model. Together with the Glauber model for the sources leads to natural description of the early LHC data
- The effect of hydrodynamics may be, under reasonable assumptions, incorporated in terms of just two parameters. Our study shows that the hydrodynamic growth faster than linear function

Conclusions

- Simple formulas linking the statistical properties of the F-B correlations in the data and in the original sources have been derived in the three-stage model. Together with the Glauber model for the sources leads to natural description of the early LHC data
- The effect of hydrodynamics may be, under reasonable assumptions, incorporated in terms of just two parameters. Our study shows that the hydrodynamic growth faster than linear function
- The hypothesis of maximal correlation of sources (continuous fluxtubes), $\rho\left(s_{f}, s_{B}\right)=1$, works for LHC.

Thank YOU!

Backup slides

STAR methodology

STAR measurement

- STAR measurement is affected by correlations to the reference bin n_{R}

$$
\begin{aligned}
\left\langle n_{A}\right\rangle_{n_{R}} & =c_{0}+c_{1} n_{R} \\
\rho^{*}\left(n_{F}, n_{B}\right) & =\frac{\rho\left(n_{F}, n_{B}\right)-R^{2}}{1-R^{2}} \\
\omega^{*}\left(n_{A}\right) & =\omega\left(n_{A}\right)\left(1-R^{2}\right) \\
c_{1}=R \frac{\sigma\left(n_{A}\right)}{\sigma\left(n_{R}\right)}, & R=\rho\left(n_{A}, n_{R}\right)
\end{aligned}
$$

STAR methodology

STAR measurement

- STAR measurement is affected by correlations to the reference bin n_{R}
- Analysis sets the multiplicity \longrightarrow computes the variance and correlation

$$
\begin{aligned}
\left\langle n_{A}\right\rangle_{n_{R}} & =c_{0}+c_{1} n_{R} \\
\rho^{*}\left(n_{F}, n_{B}\right) & =\frac{\rho\left(n_{F}, n_{B}\right)-R^{2}}{1-R^{2}} \\
\omega^{*}\left(n_{A}\right) & =\omega\left(n_{A}\right)\left(1-R^{2}\right) \\
c_{1}=R \frac{\sigma\left(n_{A}\right)}{\sigma\left(n_{R}\right)}, & R=\rho\left(n_{A}, n_{R}\right)
\end{aligned}
$$

STAR methodology

- STAR measurement is affected by correlations to the reference bin n_{R}
- Analysis sets the multiplicity \longrightarrow computes the variance and correlation
- Much more different method

$$
\begin{aligned}
& \text { STAR measurement } \\
&\left\langle n_{A}\right\rangle_{n_{R}}=c_{0}+c_{1} n_{R} \\
& \rho^{*}\left(n_{F}, n_{B}\right)=\frac{\rho\left(n_{F}, n_{B}\right)-R^{2}}{1-R^{2}} \\
& \omega^{*}\left(n_{A}\right)=\omega\left(n_{A}\right)\left(1-R^{2}\right) \\
& c_{1}=R \frac{\sigma\left(n_{A}\right)}{\sigma\left(n_{R}\right)}, R=\rho\left(n_{A}, n_{R}\right)
\end{aligned}
$$

STAR methodology

STAR measurement

- STAR measurement is affected by correlations to the reference bin n_{R}
- Analysis sets the multiplicity \longrightarrow computes the variance and correlation
- Much more different method
- Complicated formula linking F-B and P-C properties

F-b and p-c relation

$$
\rho\left(\boldsymbol{s}_{\boldsymbol{A}}, \boldsymbol{s}_{\boldsymbol{R}}\right)^{\mathbf{2}}=\frac{\left\{\left[\mathbf{1}-\frac{\delta}{\omega^{*}\left(\boldsymbol{n}_{\boldsymbol{A}}\right)}\right] \rho\left(\boldsymbol{s}_{\boldsymbol{F}}, \boldsymbol{s}_{\boldsymbol{B}}\right)-\rho^{*}\left(\boldsymbol{n}_{\boldsymbol{F}}, \boldsymbol{n}_{\boldsymbol{B}}\right)\right\}^{2}}{\left\{\mathbf{1}-\rho^{*}\left(\boldsymbol{n}_{\boldsymbol{F}}, \boldsymbol{n}_{\boldsymbol{B}}\right)-\frac{\delta}{\omega^{*}\left(\boldsymbol{n}_{\boldsymbol{A}}\right)}\right\}\left\{\rho\left(\boldsymbol{s}_{\boldsymbol{F}}, \boldsymbol{s}_{\boldsymbol{B}}\right)-\rho^{*}\left(\boldsymbol{n}_{\boldsymbol{F}}, \boldsymbol{n}_{\boldsymbol{B}}\right)-\frac{\delta}{\omega^{*}\left(\boldsymbol{n}_{\boldsymbol{A}}\right)}\left[\frac{\left\langle\boldsymbol{n}_{\mathbf{A}}\right\rangle}{\left\langle\boldsymbol{n}_{\boldsymbol{R}}\right\rangle}\left(\rho\left(\boldsymbol{s}_{\boldsymbol{F}}, \boldsymbol{s}_{\boldsymbol{B}}\right)-\mathbf{1}\right)+\rho\left(\boldsymbol{s}_{\boldsymbol{F}}, \boldsymbol{s}_{\boldsymbol{B}}\right)\right]\right\}}
$$

Forward-backward and peripheral-center correlation

- The dots indicate the estimate for $\rho\left(n_{F}, n_{B}\right) \simeq 0.72$ [2]
[1] T. Lappi and L. McLerran, Nucl. Phys. A 832, 330 (2010)
[2] A. Bzdak, Phys. Rev. C 85, 051901 (2012)

Forward-backward and peripheral-center correlation

- The dots indicate the estimate for $\rho\left(n_{F}, n_{B}\right) \simeq 0.72$ [2]
- We consider three δ values and accept the rising parts of the curves
[1] T. Lappi and L. McLerran, Nucl. Phys. A 832, 330 (2010)
[2] A. Bzdak, Phys. Rev. C 85, 051901 (2012)

Forward-backward and peripheral-center correlation

- The dots indicate the estimate for $\rho\left(n_{F}, n_{B}\right) \simeq 0.72$ [2]
- We consider three δ values and accept the rising parts of the curves
- The most central collisions $\longrightarrow \rho\left(s_{F}, s_{B}\right)>\rho\left(s_{A}, s_{R}\right)$. The puzzle $[1,2]$!
[1] T. Lappi and L. McLerran, Nucl. Phys. A 832, 330 (2010)
[2] A. Bzdak, Phys. Rev. C 85, 051901 (2012)

Mean and Variance

Independent emissions from s sources,

$$
n=\sum_{i=1}^{n} m_{i}
$$

m_{i} - number of particles produced by the ith source from some distribution ->

$$
\begin{gathered}
\langle n\rangle=\langle s\rangle\langle m\rangle . \\
\operatorname{var}(n)=\left\langle\sum_{i=1}^{s}\left(\delta m_{i}+\langle m\rangle\right) \sum_{j=1}^{s}\left(\delta m_{j}+\langle m\rangle\right)\right\rangle-(\langle s\rangle\langle m\rangle)^{2} \\
=\left\langle\sum_{i=1}^{s} \delta m_{i}^{2}\right\rangle+\left\langle\sum_{i, j=1, j \neq i}^{s} \delta m_{i} \delta m_{j}\right\rangle \\
+ \\
=2\langle m\rangle\left\langle\sum_{i=1}^{s} \delta m_{i}\right\rangle+\langle m\rangle^{2}\left\langle\sum_{i=1}^{s} \sum_{j=1}^{s}\right\rangle-\langle s\rangle^{2}\langle m\rangle^{2} .
\end{gathered}
$$

where $\delta m_{i}=m_{i}-\langle m\rangle$, with $\left\langle\delta m_{i}\right\rangle=0$.

$$
\operatorname{var}(n)=\langle s\rangle \operatorname{var}(m)+\langle m\rangle^{2} \operatorname{var}(s) .
$$

covariance and correlation

This leads us to simple relation Next, we look at the covariance between two well-separated bins, which means $\left\langle m_{i} m_{j}\right\rangle=m^{2}$, with i and j belonging to two different bins. We have

$$
\left\langle n_{1} n_{2}\right\rangle=\left\langle\sum_{i=1}^{s} m_{i} \sum_{j=1}^{s} m_{j}\right\rangle=\langle m\rangle^{2}\left\langle s_{1} s_{2}\right\rangle
$$

and we get

$$
\operatorname{cov}\left(n_{1}, n_{2}\right)=\langle m\rangle^{2} \operatorname{cov}\left(s_{1}, s_{2}\right)
$$

For the correlation coefficient it follows that

$$
\rho\left(n_{1}, n_{2}\right)=\frac{\rho\left(s_{1}, s_{2}\right)}{\sqrt{1+\frac{\omega(\boldsymbol{m})}{\langle\boldsymbol{m}\rangle \omega\left(s_{1}\right)}} \sqrt{1+\frac{\omega(\boldsymbol{m})}{\langle\boldsymbol{m}\rangle \omega\left(s_{2}\right)}}}
$$

Glauber model f-b initial sources correlations

Correlation prediction

$$
\rho\left(s_{F}, s_{B}\right)=\frac{\operatorname{cov}\left(n_{F}, n_{B}\right)}{\gamma \operatorname{var}\left(s_{A}\right)}
$$

