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OUTLINE

Outline

Motivation
Successes of viscous hydrodynamics in description of relativistic
heavy-ion collisions — intensive studies of transport coefficients
Our idea is to perform comparisons of exact solutions of simple
kinetic equations with hydro approaches, which allows us to select
correct forms of these coefficients
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MOTIVATION

Motivation

Experimental and theoretical studies of heavy-ion collisions showed that the
behavior of matter produced in such collisions is very well described by viscous
hydrodynamics, with a very small viscosity to entropy density ratio

These results brought a lot of attention to the studies of kinetic coefficients
whose values determine the magnitude of important observables such as the
elliptic flow

Interestingly, different methods lead to different values of the kinetic coefficients

Moreover, the form of the second order hydrodynamic equations depends on the
specific values of the kinetic coefficients
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MOTIVATION

Motivation

Our idea is to perform comparisons of exact solutions of simple kinetic equations
with hydrodynamic approaches — this allows for numerical determination of the
kinetic coefficients

Instead of performing complicated simulations based on the Boltzmann equation
we analyze its simple form which can be solved exactly (Baym, Heiselberg,
Wang, Wong)

We extend here some of the recent results obtained for massles particles:
W. Florkowski, R. Ryblewski, M. Strickland, Phys. Rev. C88 (2013) 024903
W. Florkowski, R. Ryblewski, M. Strickland, Nucl. Phys. A916 (2013) 249
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MOTIVATION Disadvantages

Motivation

LIMITATIONS OF OUR MODEL:
Collision term treated in the relaxation time approximation (RTA) with a constant
equilibration time

Only longitudinal expansion included (along the z-axis) — justified for early
stages of the evolution (1–2 fm/c)

Boost invariance — justified in the central region (z ≈ 0)

All particles have the same mass m
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MOTIVATION Advantages

Motivation

ADVANTAGES OF OUR MODEL:

We find exact solutions of the kinetic equation numerically

We find the proper forms of shear and bulk viscosities by studying the system’s
approach towards equilibrium
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KINETIC EQUATION Boltzmann equation

Kinetic equation
General setup

Boltzmann equation (BE) in the relaxation-time approximation (RTA)

pµ∂µG(x , p) = C[G(x , p)] C[G] = p · u Geq −G
τeq

background thermal distribution

Geq =
2

(2π)3 exp(−p · u/T )

boost-invariant variables (Bialas, Czyz)

w = tp‖ − zE v = tE − zp‖ =
√

w2 +
(
m2 + ~p 2

⊥
)
τ 2

E =
vt + wz
τ 2 p‖ =

wt + vz
τ 2

boost-invariant form of the kinetic equation
∂G
∂τ

=
Geq −G
τeq

Geq(τ,w , p⊥) =
2

(2π)3 exp

−
√

w2 + (m2 + p2
⊥)τ 2

T (τ)τ


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KINETIC EQUATION Moments

Kinetic equation
Moments

zeroth moment (describes particle production)

∂µ

∫
dP pµG =

∫
dP C

dn
dτ

+
n
τ

=
neq − n
τeq

first moment (describes energy-momentum conservation)

∂µ

∫
dP pνpµG︸ ︷︷ ︸ =

∫
dP pνC = 0

dE
dτ

= −
E + P‖
τ

Tµν = (E + P⊥)uµuν − P⊥gµν + (P‖ − P⊥)VµV ν

uµ =

(
t
τ
, 0, 0,

z
τ

)
Vµ =

(
z
τ
, 0, 0,

t
τ

)
Landau matching ∫

dP pνC = 0

0th and 1st moments are fulfilled automatically for the exact solution of BE
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KINETIC EQUATION Landau matching

Kinetic equation
Landau matching

Landau matching allows us to find effective temperature T

E(τ) = Eeq(τ)

E(τ) =
g0

τ 2

∫
dP v2 G(τ,w , p⊥)

=
g0

τ 2

∫
dP v2 Geq(τ,w , p⊥)

=
g0Tm2

π2

[
3TK2

(m
T

)
+ mK1

(m
T

)]
In the limit of vanishing particle masses:

g0Tm2

π2

[
3TK2

(m
T

)
+ mK1

(m
T

)]
−−→
m=0

6g0T 4

π2
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KINETIC EQUATION Formal solution

Kinetic equation
Formal solution

formal structure of the solutions (Baym, Heiselberg, Wang, Wong)

G(τ,w , p⊥) = D(τ, τ0)G0(τ,w , p⊥) +

τ∫
τ0

dτ ′

τeq(τ ′)
D(τ, τ ′) Geq(τ ′,w , p⊥)

D(τ2, τ1) = exp

− τ2∫
τ1

dτ ′′

τeq(τ ′′)


equilibration time in our calculations is constant

τeq = 0.25 fm/c

Romatschke-Strickland (RS) form of the initial condition

G0(w , p⊥) =
1

4π3 exp

−
√

(1 + ξ0)w2 + (m2 + p2
⊥)τ 2

0

Λ0 τ0


1 + ξ0 = x0 - initial value of the anisotropy parameter, Λ0 defines initial
transverse-momentum scale (transverse temperature)
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KINETIC EQUATION Numerical method

Kinetic equation
Numerical method

g0Tm2

π2

[
3TK2

(m
T

)
+ mK1

(m
T

)]
=

g0

2π2

[
D(τ, τ0)Λ4

0H̃2

(
τ0

τ
√

1 + ξ0
,

m
Λ0

)

+

∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ, τ ′)T ′4H̃2

(
τ ′

τ
,

m
T ′

)]
.

iterative method (Banerjee, Bhalerao, Ravishankar):
1) use a trial function T ′ = T (τ ′) on the RHS of the dynamic equation
2) the LHS of the dynamic equation determines the new T = T (τ)
3) use the new T (τ) as the trial one
4) repeat steps 1-3 until the stable T (τ) is found
particle density, transverse and longitudinal pressure

n(τ) =
g0

τ

∫
dP v G(τ,w , p⊥)

P‖(τ) =
g0

τ 2

∫
dP w2 G(τ,w , p⊥)

P⊥(τ) =
g0

2

∫
dP p2

T G(τ,w , p⊥)
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KINETIC EQUATION H̃ functions

H̃ functions

H̃2, H̃2‖, and H̃2⊥ functions are defined as integrals:

H̃2(y , z) =

∞∫
0

dr r 3
e
−
√

r2+z2H2

(
y ,

z
r

)
,

H̃2‖(y , z) =

∞∫
0

dr r 3
e
−
√

r2+z2H2‖

(
y ,

z
r

)
,

H̃2⊥(y , z) =

∞∫
0

dr r 3
e
−
√

r2+z2H2⊥

(
y ,

z
r

)
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KINETIC EQUATION H functions

H functions

H2, H2‖, and H2⊥ functions are defined similarly as:

H2

(
y ,

z
r

)
= y

π∫
0

dφ sinφ

√
y2 cos2 φ+ sin2 φ+

(z
r

)2
,

H2‖

(
y ,

z
r

)
= y3

π∫
0

dφ
sinφ cos2 φ√

y2 cos2 φ+ sin2 φ+
( z

r

)2
,

H2⊥

(
y ,

z
r

)
= y

π∫
0

dφ
sin3 φ√

y2 cos2 φ+ sin2 φ+
( z

r

)2

These integrals are analytic but the results are rather lengthy and not shown
here.
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RESULTS Thermodynamics-like variables

Thermodynamics-like variables
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RESULTS Bulk viscous pressure

Bulk viscous pressure

Bulk pressure in the kinetic theory may be defined as:

Πk
ζ =

1
3
[
P‖(τ) + 2P⊥(τ)− 3Peq(τ)

]
.

When the system approaches equilibrium, we expect

Πζ(τ) = −ζ(T (τ))

τ
,

where the bulk viscosity is given by the formula
(Redlich and Sasaki, PRC 79 (2009) 055207; Bożek, PRC 81 (2010) 034909):

ζ(T ) =
g0m2

3π2T

∞∫
0

p2e−
√

m2+p2

T

[
c2

s (T )− p2

3(m2 + p2)

]
dp.

Hydrodynamic predictions for the time dependence of the bulk viscous pressure
(Israel, Stewart):

τeq

(
dΠh

ζ

dτ
+

4Πh
ζ

3τ

)
+ Πh

ζ = − ζ
τ
.
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RESULTS Comparison with exact solutions

Comparison with exact solutions - bulk viscosity
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RESULTS Bulk viscosity - Anderson and Witting formula

Bulk viscosity - Anderson and Witting

Anderson and Witting formula, Physica 74 (1974) 466, Physics for bulk viscosity:

ζ =
τp
3

m
T

[
3
(
G2ζ − 5G − ζ

)
ζ2 + 5Gζ −G2ζ2 − 1

+
ζ2

3

(
3G
ζ2 −

1
ζ

+
K1

K2
− Ki1

K2

)]

here
ζ =

m
T
,

G =
K3

K2
,

Ki,n(ζ) =

∞∫
ζ

Ki,n−1(t)dt =

∞∫
0

e
−ζ cosh t

coshn t
dt
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RESULTS Comparison A-W for bulk viscosity with exact solutions

Comparison with exact solutions - Anderson-Witting
formula for bulk viscosity
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RESULTS Comparison A-W for bulk viscosity with exact solutions

Comparison with exact solutions - bulk viscosity
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RESULTS Shear viscous pressure

Shear viscous pressure

The calculation by Anderson and Witting, Physica 74 (1974) 466, gives the shear
viscosity coefficient in the form

η =
τp
15

(m
T

)3
[

3T 2

m2

K3

K2
− T

m
+

K1

K2
− Ki1

K2

]
From the kinetic equation we obtain the effective shear viscosity as

ηe� =

(
P⊥ − P‖

)
τ

2
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RESULTS Comparison A-W for shear viscosity with exact solutions

Comparison with exact solutions - shear viscosity
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Conclusions

Conclusions

We have constructed exact solutions of the one-dimensional boost-invariant
kinetic equation treated in the relaxation time approximation.

The previous approaches valid for massless particles have been generalized.

We have established the correspondence between the late, near equilibrium
evolution of the system described by the kinetic theory and by the viscous
hydrodynamics.

We have shown that the late time behavior of the bulk viscous pressure is
determined by the bulk viscosity formula used, e.g., by Bozek and Redlich. On
the other hand, a disagreement has been found with the Anderson-Witting
formula.

On the other hand, Anderson-Witting formula for the shear viscosity works well in
the case of massive particles (and also for massless particles, as it was shown
before).
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Thank You
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