Four things they tell you about heavy flavor flow

... that aren't true

Daniel Kikoła

Warsaw University of Technology

UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ ROZWOJU REGIONALNEGO

Heavy Flavor ≡ charm and beauty quarks

$$\frac{dN}{d\left(\phi-\Psi_{RP}\right)} \propto 1 + 2v_2 \cos 2\left(\phi-\Psi_{RP}\right)$$

1. We measure Heavy Flavor flow

2. We measure flow

3. Finite v_2 of Heavy Flavor electron indicates heavy flavor flow

4. Heavy Flavor electron v_2 at low p_T indicates charm flow

We measure Heavy Flavor flow

In the experiment:

Electrons from semi-leptonic heavy flavor hadrons decay (Non-photonic electrons)

Direct open charm reconstruction

Courtesy of David Tlusty

How much charm v_2 in D-meson v_2 ?

v₂ should depend on production mechanism

- Naive expectation:
 - Coalescence with light quark \rightarrow larger v_2 due to light quark v_2
 - Fragmentation closer relation to parent $v_2 \rightarrow$ smaller v_2

Coalescence with light quark

Min-bias Au+Au 200 GeV

50% of D meson v_2 could be from light quark

Phys.Lett. B595 (2004)

BAMPS \rightarrow fragmentation \rightarrow large v₂ TAMU \rightarrow coalescence (at low p_T) \rightarrow smaller v₂

 \rightarrow results depend on details of interaction mechanism

1. "We measure Heavy Flavor flow"

Reality: no direct access to heavy quarks \rightarrow charmed/beauty meson (with light quark contribution) is the closest we can get

2. We measure flow

- Experiment:
 - $v_2 \rightarrow$ final state momentum anisotropy
 - $v_2^{EP}, v_2^{2}, v_2^{4}$
 - Other effects than flow \rightarrow jet-like correlations, decay kinematics
- Flow (v_2) is not uniquely defined
 - reaction vs participants plane
 - How to define that plane?
 - integrate over gluon density?
 - count participant nucleons?

Phys. Rev. Lett. 108, 252301

1. "We measure Heavy Flavor flow"

Reality: no direct access to heavy quarks \rightarrow charmed/beauty meson (with light quark contribution) is the closest we can get

2. "We measure flow"

Reality: we measure final state anisotropy, flow is not even uniquely defined in theory

Finite v₂ of heavy flavor electron indicates heavy flavor flow

Non-photonic electrons

Proxies for heavy flavor quarks

 p_{T} shift compared to parent quark

How much "nonflow" in D-meson v_2 ?

ALICE:

"...[non-flow] effect was estimated to be small with respect to the other uncertainties by repeating the analysis using the event plane determined in a different η region with the VZERO detector."

LHC:

- large jet production
- large di-jet imbalance

CERN-PH-EP/2011-001

LHC – large di-jet imbalance

Really, ALICE? No jet effect on D v₂ measurement?

RHIC vs LHC

Positive v_2 at $p_T > 1$ GeV/c for heavy flavor leptons

No energy dependence within uncertainties

1. "We measure Heavy Flavor flow"

Reality: no direct access to heavy quarks \rightarrow charmed/beauty meson (with light quark contribution) is the closest we can get

2. "We measure flow"

Reality: we measure final state anisotropy, flow is not even uniquely defined in models

- 3. "Finite v₂ of HF electron indicates heavy flavor flow"
 - Reality: need to be very careful about correlations due to jets and decay kinematics

4. Heavy flavor electron v_2 at low p_T indicates charm flow

p^e_⊤ ~1.5 – 2 GeV/c for charm v₂ study

W. Xu, QM 2011

At $p_T \sim 2$ GeV, up to 40% from $B \rightarrow p_T$ shift and v_2 smearing What about D/B suppression?

NPE v_2 in Beam Energy Scan

Lower energy \rightarrow less issues with bottom

Unfortunately issues with statistics as well

1. "We measure Heavy Flavor flow"

Reality: no direct access to heavy quarks \rightarrow charmed/beauty meson (with light quark contribution) is the closest we can get

2. "We measure flow"

Reality: we measure final state anisotropy, flow is not even uniquely defined in models

- 3. "Finite v_2 of HF electron indicates heavy flavor flow"
 - Reality: need to be very careful about correlations due to jets and decay kinematics
- 4. HF electron v_2 at low p_T indicates charm flow
 - Reality: need charm/beauty separation in Au+Au to claim that

Path forward:

provide as much precise data as possible and ask theory to describe all of them

Heavy Flavor Tracker at STAR

Best data so far ...

PRL 111, 102301 (2013)

STAR data with Heavy Flavor Tracker

PRL 111, 102301 (2013)

HFT Conceptual Design Report

STAR data with Heavy Flavor Tracker

Best data yet to come from STAR

33

Backup

Elliptic flow of HF muons

Increase of v₂ from central to semi-central collisions

Positive v_2 in semi-central collisions at intermediate p_T (3 σ effect)

Two-particle distribution = sum of an uncorrelated distribution and twoparticle (direct) correlations

$$\frac{dN_{jk}}{d^3\mathbf{p_1}d^3\mathbf{p_2}} = \frac{dN_j}{d^3\mathbf{p_1}}\frac{dN_k}{d^3\mathbf{p_2}}\left(1 + C_{jk}(\mathbf{p_1}, \mathbf{p_2})\right)$$

$$\langle \cos n(\phi_1 - \phi_2) \rangle = \upsilon_n^2 + nonflow$$

nonflow: jets, resonance decays, HBT ..

If nonflow $\delta \approx 0$ and negligible fluctuations ($\sigma \approx 0$):

Using 2-particle correlations: $\upsilon_n \{2\}^2 = \langle \cos n(\phi_1 - \phi_2) \rangle = \langle \upsilon_n \rangle^2$

Using 4-particle correlations:

$$\upsilon_n \{4\}^4 = 2\langle \cos n(\phi_1 - \phi_2) \rangle - \langle \cos n(\phi_1 + \phi_2 - \phi_3 - \phi_4) \rangle$$
$$= 2\langle \upsilon_n^2 \rangle^2 - \langle \upsilon_n \rangle^4 = \langle \upsilon_n \rangle^4$$

If nonflow $\delta \neq 0$ and non-negligible fluctuations ($\sigma \neq 0$):

$$\upsilon_n \{2\}^2 = \langle \upsilon_n^2 \rangle + \sigma^2 + \delta$$
$$\upsilon_n \{4\}^4 = (\langle \upsilon_n \rangle^2 + \sigma^2)^2 - 2\sigma^4$$

L. Yi, et al. arxiv: 1101.4646 (assuming Gaussian fluctuations)

 \rightarrow upper and lower limit on elliptic flow

Physics Letters B 719 (2013) 18-28

Physics Letters B 719 (2013) 18-28

Flow should affect spectra ...

He, Fries, Rapp: PRC86,014903; arXiv:1204.4442; private comm. P. Gossiaux: arXiv: 1207.5445

Enhancement at intermediate p_{τ} due to radial flow?

Flow should affect spectra ...

BAMPS Uphoff et al. arXiv: 1112.1559, Aichelin et al. Aichelin et al. Phys. Rev. C 79 (2009) 044906,

WHDG W. A. Horowitz et al. J. Phys. G38, 124064 (2011), POWLANG W. M. Alberico et al. Eur. Phyis J. C 71, 1666 (2011), TAMU M. He, R. J. Fries and R. Rapp, arXiv:1204.4442[nucl-th],

UrQMD arXiv:1211.6912, J. Phys. Conf. Ser. 426, 012032 (2013), Cao, Quin, Bass arXiv:1308.0617

HP13 Cape Town, 6/11/2013

ALICE Heavy-Flavour Results

D. Caffarri 30