Chiral condensate in hadron gas

Jakub Jankowski

Institute of Physics, Jagiellonian University

12 grudnia 2013

Collboration with D. Blaschke, M. Spaliński and P. Petreczky

Jakub Jankowski Chiral condensate in hadron gas

・ 戸 ト ・ ヨ ト ・ ヨ ト

Hadron Resonance Gas

$$\Omega_{
m HRG}(\, {\mathcal T}) = \pm \sum_{H} d_{H} \int rac{d^{3}k}{(2\pi)^{3}} {\mathcal T} \ln \{ 1 \mp e^{-eta E_{H}} \}$$

 $\bullet\,$ Free hadron contribution up to $m_{
m max}\sim 2\,$ GeV

• $T_c \approx 155~{
m MeV} \approx 10^{12}{
m K}$ to compare $T_{
m sun@center} \approx 10^7{
m K}$

nac

Chiral condensate in Hadron Resonance Gas

• Free hadron contributions,

$$\langle \bar{q}q \rangle = \langle \bar{q}q \rangle_0 - \sum_H \frac{\partial m_H}{\partial m_q} n_H(T) ,$$

with scalar densities for mesons and baryons

$$n_H(T) = rac{d_H}{2\pi^2} \int_0^\infty dk k^2 rac{m_H}{E_H} rac{1}{e^{eta E_H} \pm 1} \; ,$$

where $\beta = 1/T$ and $E_H = \sqrt{m_H^2 + k^2}$.

- Microscopic hadron structure turns out to be crucial for the description of the condensate
- Quantified by hadronic sigma terms

$$\sigma_{qH} = m_q \frac{\partial m_H}{\partial m_q}$$

• N³LO ChPT sigma terms for N-octet and Δ -decuplet

$$m_B = m_0 + m_B^{(2)} + m_B^{(3)} + m_B^{(4)}$$

where m_0- chiral limit mass, $m_B^{(2)}\sim am_\pi^2+cm_K^2$

$$\circ~\sigma_{\pi N} \sim (42\pm14)$$
 MeV , $\sigma_{\pi\Delta} \sim (28\pm9)$ MeV

• $\pi-N$ scattering experiments $\longrightarrow \sigma_{\pi N} \sim$ 45 MeV

X. -L. Ren *et al.* arXiv:1307.1896 X. -L. Ren *et al.* Phys. Rev. D **87**, 074001 (2013)

《日》 《圖》 《臣》 《臣》

SOR

 We assume hadron mass is determined by the valence quark masses

$$m_M = (2 - N_s)M_q + N_sM_s + \kappa_M$$
, $m_B = (3 - N_s)M_q + N_sM_s + \kappa_B$

 κ_H are state dependent quantities independent of m_q

 Response of the dynamical quark mass to the current quark mass is estimated by the NJL model

$$\Delta M_q \sim 12.5 \,\, {
m MeV}$$
 , $\Delta M_s \sim 227.4 \,\, {
m MeV}$

• Strangness content N_s is determined by the hadron flavour structure $N_S = 0, 1, 2, 3$ open strangeness $N_s = 2/3$ or $N_s = 4/3$ for hidden strangeness

JJ, D. Blaschke, M. Spaliński, Phys. Rev. D 87, 105018 (2013)

nac

Lattice observables

$$\Delta_{l,s}(T) = \frac{\langle \bar{q}q \rangle - \frac{m_q}{m_s} \langle \bar{s}s \rangle}{\langle \bar{q}q \rangle_0 - \frac{m_q}{m_s} \langle \bar{s}s \rangle_0} , \qquad (1)$$

$$\Delta_I^R(T) = d + 2m_s r_1^4(\langle \bar{q}q \rangle - \langle \bar{q}q \rangle_0) , \qquad (2)$$

$$\Delta_s^R(T) = d + 2m_s r_1^4(\langle \bar{s}s \rangle - \langle \bar{s}s \rangle_0) , \qquad (3)$$

- Sensitive to χ -symmetry and without renormalization ambiguities both multiplicative and additive
- d = 0.023 is related to the value of the chiral condensate in the chiral limit
- $r_1=0.174/{\it f_K}$, with ${\it f_K}=113$ MeV sets the physical scale

A. Bazavov et al., Phys. Rev. D 85, 054503 (2012)

nac

A. Bazavov, P. Petreczky, Phys. Rev. D 87, 094505 (2013)

Jakub Jankowski Chiral condensate in hadron gas

5900

1

Results \longrightarrow hotQCD & Wuppertal-Budapest

A. Bazavov, P. Petreczky, Phys. Rev. D **87**, 094505 (2013) Wuppertal-Budapest Collaboration, JHEP **1009**, 073 (2010)

nar

- Most important contribution to the condensates comes from the lightest states
- Possibility to estimate $T_c(\mu_B)$ dependence
- Other chiral observables, like chiral susceptibilities are sensitive to hadron-hadron interactions

A. Gomez Nicola et al. Phys. Rev. D 88, 076007 (2013)

 Hadron contribution to the melting of the condensate was appreciated in a model for the freeze-out stage of HIC D. Blaschke, J. Berdermann, J. Cleymans, K. Redlich, Few Body Syst. 53, 99 (2012)

・ロト (同ト (ヨト (ヨト