Universality of long wavelength dynamics

Alina Czajka

Institute of Physics, UJK, Kielce

in collaboration with Stanisław Mrówczyński

X Polish Workshop on Relativistic Heavy-Ion Collisions Unresonable Effectiveness of Statistical Approaches to High-Energy Collisions 13 – 15. 12. 2013, Kielce

A. Czajka, Universality of long wavelength dynamics

Universality of Hydrodynamics

Hydrodynamics of a perfect fluid

- macroscopic description
- **conservation laws** (for a neutral system)

 $\partial_{\mu}T^{\mu\nu}=0$ $T^{\mu
u}$ - energy-momentum tensor

local thermodynamical equilibrium:

$$T^{\mu\nu} = (\varepsilon + p)u^{\mu}u^{\nu} - pg^{\mu\nu} \qquad \qquad p \text{ - pressure}$$

$$\varepsilon \text{ - energy density}$$

Additionally, the equation of state: u^{μ} - hydrodynamical velocity

 $f(p,\varepsilon) = 0$ For example: $p = \frac{1}{3}\varepsilon$ - for plasma of massless constituents A whole dynamics is hidden in the equation of state.

Dissipative hydrodynamics

there is no ideal isotropy

transport coefficients show up

conservation laws

$$\partial_{\mu}T^{\mu\nu} = 0 \qquad T^{\mu\nu} = T^{\mu\nu}_{ideal} + \Pi^{\mu\nu}$$

the equation of state

dissipative term

 \mathbf{J}

 $f(p,\varepsilon) = 0$

Dynamics is governed by EoS and transport coefficients.

The hydrodynamic evolution of two different systems is qualitatively still the same.

The differences lie in numerical factors.

A. Czajka, Universality of long wavelength dynamics

The question

Macroscopic hydrodynamic behaviour of different systems is very **similar**

Microscopic dynamics of different systems can be very different

How does the universality emerge?

Microscopically

$$\begin{aligned}
\mathcal{L}_{\text{QED}} &= -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + i \overline{\Psi} \gamma_{\mu} D^{\mu} \Psi \\
F^{\mu\nu} &= \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} \\
\mathcal{L}_{\text{SUSY QED}} &= -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + i \overline{\Psi} \gamma_{\mu} D^{\mu} \Psi + \frac{i}{2} \overline{\Lambda} \gamma_{\mu} \partial^{\mu} \Lambda + (D_{\mu} \phi_{L})^{*} (D^{\mu} \phi_{L}) + (D_{\mu}^{*} \phi_{R}) (D^{\mu} \phi_{R}^{*}) \\
&+ \sqrt{2} e (\overline{\Psi} P_{R} \Lambda \phi_{L} - \overline{\Psi} P_{L} \Lambda \phi_{R}^{*} + \phi_{L}^{*} \overline{\Lambda} P_{L} \Psi - \phi_{R} \overline{\Lambda} P_{R} \Psi) - \frac{e^{2}}{2} (\phi_{L}^{*} \phi_{L} - \phi_{R}^{*} \phi_{R})^{2}
\end{aligned}$$

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} F_a^{\mu\nu} F_{\mu\nu}^a + i \overline{\Psi_i} (\gamma_\mu D^\mu)_{ij} \Psi_j \qquad \qquad F_a^{\mu\nu} = \partial^\mu A_a^\nu - \partial^\nu A_a^\mu + g f^{abc} A_b^\mu A_c^\nu$$

$$\mathcal{L}_{\text{SYM}} = -\frac{1}{4} F_a^{\mu\nu} F_a^a + \frac{i}{2} \overline{\Psi}_i^a (\gamma_\mu D^\mu \Psi_i)^a + \frac{1}{2} (D_\mu \Phi_A)_a (D^\mu \Phi_A)_a$$
$$-\frac{1}{4} g^2 f^{abe} f^{cde} \Phi_A^a \Phi_B^b \Phi_A^c \Phi_B^d - i \frac{g}{2} f^{abc} (\overline{\Psi}_i^a \alpha_{ij}^p X_p^b \Psi_j^c + i \overline{\Psi}_i^a \beta_{ij}^p \gamma_5 Y_p^b \Psi_j^c)$$

Effective action

Macroscopic description is derived in terms of effective action.

How to find the effective action?

Self-energy constrains the form of effective action $\mathcal{L}_{2}^{(A)}(x) = \frac{1}{2} \int d^{4}y A_{\mu}(x) \Pi^{\mu\nu}(x-y) A_{\nu}(y)$

$$\Pi^{\mu\nu}(x,y) = \frac{\delta^2 S[A]}{\delta A_{\mu}(x) \delta A_{\nu}(y)}$$

Our strategy

self-energy is effective action is description of the system

Polarization tensors

A. Czajka, Universality of long wavelength dynamics

Hard Loop Approximation

Wavelength of a quasi-particle is much bigger than inter-particle distance in the plasma:

Polarization tensor

$$\Pi(k) = \# \int \frac{d^3 p}{(2\pi)^3} \frac{f(\mathbf{p})}{E_p} \frac{k^2 p^{\mu} p^{\nu} - [p^{\mu} k^{\nu} + k^{\mu} p^{\nu} - g^{\mu\nu} (k \cdot p)](k \cdot p)}{(k \cdot p + i0^+)^2}$$

$$k^{\mu} \ll p^{\mu}$$

After the HL approximation is applied the polarization tensor gets **the same structure** for the \mathcal{N} =4 SYM, YM, QCD, SUSY QED and usual QED plasma.

Fermionic self-energies

Fermion self-energy

$$\Sigma(k) = \# \int \frac{d^3 p}{(2\pi)^3} \frac{f(\mathbf{p})}{E_p} \frac{\hat{p}}{k \cdot p + i0^+} \qquad k^{\mu} << p^{\mu}$$

The fermion self-energy in HL approximation has **the same structure** for the
$$\mathcal{N}=4$$
 SYM, SUSY QED and usual QED plasma.

The structure of self-energy of every field (vector, spinor, scalar) appears to be universal.

From self-energies to effective action

$$\mathcal{L}_{\mathrm{HL}}^{(A)}(x) = g^2 N_c \int \frac{d^3 p}{(2\pi)^3} \frac{f(\mathbf{p})}{E_p} F_{\mu\nu}^a(x) \left(\frac{p^{\nu} p^{\rho}}{(p \cdot D)^2}\right)_{ab} F_{\rho}^{b\mu}(x)$$
$$\mathcal{L}_{\mathrm{HL}}^{(\Psi)}(x) = g^2 N_c \int \frac{d^3 p}{(2\pi)^3} \frac{f(\mathbf{p})}{E_p} \overline{\Psi}_i^a(x) \left(\frac{p \cdot \gamma}{p \cdot D}\right)_{ab} \Psi_i^b(x)$$
$$\mathcal{L}_{\mathrm{HL}}^{(\Phi)}(x) = -2g^2 N_c \int \frac{d^3 p}{(2\pi)^3} \frac{f(\mathbf{p})}{E_p} \Phi_A^a(x) \Phi_A^a(x)$$
$$\frac{1}{p \cdot D} \Psi(x) \equiv \frac{1}{p \cdot \partial} \sum_{n=0}^{\infty} \left(igp \cdot A(x) \frac{1}{p \cdot \partial}\right)^n \Psi(x) \qquad \frac{1}{p \cdot \partial} \Psi(x) \equiv i \int \frac{d^4 k}{(2\pi)^4} \frac{e^{-ik \cdot x}}{p \cdot k} \Psi(k)$$

The structure of each term of the effective action appears to be unique.

The universality of the effective action does not require an equilibrium.

Conclusions

- Universality of hydrodynamics is a consequence of its macroscopic character combined with local equilibrium.
- Universality at the macroscopic level appears as a result of long wavelength limit.
 There is no need for the equilibrium requirement.

• From our point of view, statistical models are so efficient mostly because of their macroscopic character.