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STATISTICAL MODEL (as I understand it)

1. STATISTICAL MODEL: HADRONIZATION PROCEEDS
THROUGH FORMATION OF INDEPENDENT CLUSTERS
WHICH DECAY STATISTICALLY INTO OBSERVED
HADRONS (BECATTINI).

2. ALTHOUGH DISTRIBUTION OF CLUSTERS IN
MOMENTUM SPACE IS NOT FIXED BY THE MODEL,
THIS APPROACH ALLOWS TO EVALUATE RATIOS OF
VARIOUS PARTICLE YIELDS AND EVEN TRANSVERSE
MOMENTUM SPECTRA (ASSUMING CLUSTER’S
TRANSVERSE MOMENTA ARE NEGLIGIBLE). THE
RESULTS AGREE WELL WITH DATA.

3. SINCE THIS IDEA SEEMS TO WORK EVERYWHERE,
IT LOOKS THAT CLUSTERS REPRESENT A UNIVERSAL
FEATURE OF HADRONIZATION. THEREFORE IT IS
URGENT TO STUDY THEIR STRUCTURE AND
PROPERTIES.



CLUSTERS AND CORRELATIONS

1. A VERY GENERAL CONSEQUENCE OF THE CLUSTER
FORMATION IS THE PRESENCE OF MULTIPARTICLE
CORRELATIONS.

2. MORE: THE STRUCTURE AND PROPERTIES OF
CLUSTERS ARE REFLECTED IN THE STRUCTURE AND
PROPERTIES OF CORRELATIONS.

3. THEREFORE, IN SEARCH OF THE DYNAMICAL
ORIGIN OF THE STATISTICAL MODEL IT IS
NECESSARY TO STUDY CORRELATIONS BETWEEN
PRODUCED PARTICLES.

4. PROBABLY THE MOST IMPORTANT QUESTION IS
THAT OF UNIVERSALITY.



TWO-PARTICLE CORRELATIONS

1. EVEN IF PARTICLES FROM ONE CLUSTER ARE
EMITTED INDEPENDENTLY, THEY ARE CORRELATED
IN MOMENTUM SPACE.

TAKE A CLUSTER AT A POSITION Y IN RAPIDITY.
CONSIDER TWO PARTICLES EMITTED FROM THIS
CLUSTER AT POSITIONS y1 and y2. THE DISTRIBUTION
OF y1, y2 IS

ρ(y1, y2) =

∫
dYF (Y )f (y2 − Y )f (y1 − Y ) (1)

TAKING GAUSSIANS: F = e−Y
2/Ω2

; f = e−(y−Y )2/∆2
WE

OBTAIN

ρ(y1, y2) ∼ e−(y1−y2)2/2∆2
e−(y1+y2)2/2(∆2+2Ω2) (2)

ONE SEES THAT DISTRIBUTION IN (y1 − y2) MEASURES
THE WIDTH OF THE CLUSTER.



STATISTICAL CLUSTERS

NEGLECTING QUANTUM STATISTICS, THE DECAY OF
THE CLUSTER CENTERED AT ~P = 0 IS DESCRIBED BY

ρ(~p)d3p/E ∼ e−E/Td3p/E = e−E/Td2p⊥dy (3)

ASSUME THE CLUSTER MOVES IN TRANSVERSE
DIRECTION WITH VELOCITY V . ONE CAN EVALUATE
VARIOUS DISTRIBUTION OF EMITTED PARTICLES:

ρ(p⊥) ∼ K0 [γm⊥/T ] I0[γVp⊥/T ];

ρ(y) ∼
∫

p⊥dp⊥e
−γm⊥ cosh y/T I0[γVp⊥/T ]. (4)

ONE SEES THAT, WITH INCREASING V , ρ(p⊥)
BROADENS, WHILE ρ(y) GETS NARROWER.

AT V = 0 : ρ(y) ∼ 1+(m/T ) cosh y

cosh2 y
e−(m/T ) cosh y



RAPIDITY CORRELATIONS 1

CONSIDER TWO PARTICLES EMITTED FROM A
CLUSTER AT REST (NO TRANSVERSE MOMENTUM)
THE RAPIDITY DISTRIBUTION IS THE PRODUCT OF
THE SINGLE-PARTICLE DISTRIBUTIONS. THEREFORE
THE DISTRIBUTION OF THE DIFFERENCE
y− = (y1 − y2)/2 IS

ρ(y−) =

∫
dy+ρ(y1)ρ(y2) =

∫
dy+ρ(y+ + y−)ρ(y+ − y−) (5)

WITH

ρ(y) ∼ 1 + (m/T ) cosh y

cosh2 y
e−(m/T ) cosh y (6)

THE RESULT DOES NOT DEPEND ON THE POSITION
OF THE CLUSTER BUT DEPENDS ON THE RATIO m/T .



RAPIDITY CORRELATIONS 2
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Figure: Distribution of y− = (y1 − y2)/2 from decay of a statistical
cluster at rest with T = 160 MeV, plotted versus y2

−. The three lines
correspond to pion, kaon and proton mass (proton is steepest).



RAPIDITY CORRELATIONS 3:
CLUSTERS MOVING IN TRANSVERSE DIRECTION

CONSIDER A CLUSTER MOVING IN TRANSVERSE
DIRECTION WITH VELOCITY V AND THE LORENTZ
FACTOR γ.

ρ(y)dy = dy
Am2

B2
[1 + 1/B] e−B (7)

A = (m/T )
√

1 + γ2v2 cosh(y − Y );

B = (m/T )

√
1 + (1 + γ2v2) sinh2(y − Y ) (8)

AGAIN, THE DISTRIBUTION OF THE DIFFERENCE
y− = (y1 − y2)/2 IS

ρ(y−) =

∫
dy+ρ(y1)ρ(y2) =

∫
dy+ρ(y+ + y−)ρ(y+ − y−) (9)



RAPIDITY CORRELATIONS 4
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Figure: Distribution of y− = (y1 − y2)/2, plotted vs y2
−, from the pion

decay of a statistical cluster moving in transverse direction with velocity
v = 0., 0.2, 0.4, 0.6, 0.8. T = 160 MeV. The slope increases with
increasing v .



RAPIDITY CORRELATIONS 5
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Figure: The width of rapidity distribution in cluster decay versus
transverse Lorentz factor. Lower line: < |y | >; Upper line:

√
< y2 >



JET AS A STATISTICAL CLUSTER

CONSIDER A CLUSTER AT RAPIDITY = 0, MOVING IN
THE TRANSVERSE DIRECTION WITH TRANSVERSE
ENERGY DISTRIBUTED ACCORDING TO POWER LAW:

dw = (k − 1)

(
Ec

Mc

)−k
d

(
Ec

Mc

)
= (k − 1)γ−kdγ;

∫
dw = 1.(10)

THE DISTRIBUTION OF TRANSVERSE MOMENTUM OF
PARTICLES FROM CLUSTER DECAY IS THEN

dn

dm2
⊥
∼
∫ ∞

1
dγγ−k I0[γVp⊥/T ]K0[γm⊥/T ] (11)

IT TURNS OUT THAT THIS DISTRIBUTION IS VERY
CLOSE TO THE TSALLIS DISTRIBUTION, AS SEEN IN
THE NEXT SLIDE.



p⊥ DISTRIBUTION
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Figure: Transverse momentum distribution dn/dp2
⊥ of a statistical cluster

for p⊥ ≤ 200 GeV. T = 160 MeV. Distribution of the cluster energy is
taken to be dN/dE ∼ 1/E k with k = 4. The result is compared with the
Tsallis distribution ∼ 1/[1 + (m⊥ −m)/κTts ]κ. Pions: with κ = 5.16
and Tts = 122 MeV. Kaons: κ = 5.20 and Tts = 200 MeV. Protons:
κ = 5.20 and Tts = 310 MeV. The Tsallis formula is almost perfectly
recovered



p⊥ DISTRIBUTION
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Figure: The same as in Fig. 4 in the region p⊥ ≤ 2 GeV.



MULTI-PARTICLE CORRELATIONS

SELECT A BIN IN RAPIDITY OF SIZE δ. CONSIDER
CONTRIBUTION TO THIS BIN FROM ONE CLUSTER AT
A POSITION Y DISTRIBUTED WITH F (Y ). IF
PARTICLES ARE EMITTED INDEPENDENTLY
(POISSON), THE GENERATING FUNCTION OF THE
DISTRIBUTION IN THE BIN δ IS

Φ(z , δ) ≡
∑
n

P(n)zn =

∫ ∞
−∞

dYF (Y )e−n̄g(δ,Y )(z−1) (12)

WITH

g(δ,Y ) =

∫
δ dy

′ f (y ′ − Y )∫
du f (u)

(13)

WHERE f (u) IS THE DECAY DISTRIBUTION AND n̄ IS
THE AVERAGE MULTIPLICITY IN CLUSTER DECAY.



MANY CLUSTERS

CONSIDER MANY CLUSTERS LOCATED AT THE
POINTS Ym DISTRIBUTED AROUND THE POINTS
Ȳm = m∆, m = −N, ...,N ACCORDING TO

Fm(Ym) = (Y0
√
π)−1e−(Ym−Ȳm)2/Y 2

0 (14)

IF THE CLUSTERS ARE INDEPENDENT, THE
GENERATING FUNCTION IN THE BIN δ IS

Φ(z , δ) =
N∏

m=−N
Φm(y , δ) (15)

WITH Φm(z , δ) =
∫∞
−∞ dYFm(Y )e−n̄g(δ,Y )(z−1).

Φ(z , δ) =

∫ [ N∏
m=−N

dYmF (Ym)

]
e(z−1)

∑N
m=−N n̄g(δ,Ym) (16)



FACTORIAL MOMENTS
FROM THE GENERATING FUNCTION ONE CAN
EVALUATE THE FACTORIAL MOMENTS

Fk(δ) =
dkΦ(z , δ)

dzk
[z = 1]; fk ≡ Fk/F

k
1 ; F1 =< n > (17)

FOR NEGATIVE BINOMIAL φ(z) = [1+ < n > (1− z)/κ]−κ

f2 = 1 + 1/κ ; f3 = (1 + 1/κ)(1 + 2/κ) (18)

I.E. 1/κ2 = f 2− 1 AND 1/κ3 = [
√

1 + 8f3 − 3]/4.

THE DIFFERENCE BETWEEN 1/κ2 AND 1/κ3 MEASURES
DEVIATION FROM THE NEGATIVE BINOMIAL.

I HAVE EVALUATED NUMERICALLY f2 and f3 OF THE
DISTRIBUTION IN THE BIN δ FOR VARYING BIN SIZE
AND VARIOUS VALUES OF ∆ (AVERAGE DISTANCE
BETWEEN CLUSTERS) AND Y0 (THE WIDTH OF THE
CLUSTER POSITION AROUND ITS AVERAGE).



NEGATIVE BINOMIAL ?

∆ = Y0 = 2, 1, 0.5
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Figure: The parameter 1/k determined from f2 and from f3 plotted
versus the length of the rapidity bin. The three groups of curves
correspond to ∆ = 2,∆ = 1 and ∆ = 0.5 (∆ is the distance between

clusters). The distribution of clusters is ∼ e−(Y−Yi )
2/Y 2

0 with Y0 = ∆.



NEGATIVE BINOMIAL ?

∆ = 1 Y0 = 2, 1, 0.5
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Figure: The parameter 1/k determined from f2 and from f3 plotted
versus the length of the rapidity bin, for ∆ = 1. The three groups of
curves correspond to Y0 = 2,Y0 = 1 and Y0 = 0.5



NEGATIVE BINOMIAL ?

Y0 = 1 ∆ = 2, 1, 0.5
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Figure: The parameter 1/k determined from f2 and from f3 plotted
versus the length of the rapidity bin, for Y0 = 1. The three groups of
curves correspond to ∆ = 2,∆ = 1 and ∆ = 0.5



CONCLUSIONS AND OUTLOOK

1. IN MY OPINION, FORMATION OF CLUSTERS
PROVIDES THE BEST ANSWER TO THE QUESTION
WHY THE STATISTICAL MODEL WORKS ALMOST
EVERYWHERE.

2. IT IS ENCOURAGING THAT THE OBSERVED
(TSALLIS) TRANSVERSE MOMENTUM DISTRIBUTION
CAN BE RECONSTRUCTED USING THIS IDEA.

3. IF CLUSTERS DO EXIST, THERE ARE SIMPLE
CONSEQUENCES FOR MULTI-PARTICLE SPECTRA.
MOST INTERESTING ARE (i) TWO PARTICLE
CORRELATIONS BOTH IN LONGITUDINAL AND IN
TRANSVERSE DIRECTIONS AND (ii) MULTIPLICITY
DISTRIBUTIONS IN VARIOUS RAPIDITY BINS.

4. SUCH MEASUREMENTS SHOULD ALLOW TO LEARN
ABOUT PROPERTIES OF THE CLUSTERS.



APPENDIX 1
We start from the decay of a cluster centered at ~P = 0:

ρ(~k)d3k/ε ∼ e−ε/Td3k/ε (19)

If this distribution is regarded from a system moving with
transverse velocity V in, say, y-direction, we have

ρ(~p)d3p/E ∼= e−γ[Vpy+E ]/Td2p⊥dy =

= e−γ[Vp⊥ cosφ+m⊥ cosh y ]/Tp⊥dp⊥dφdy (20)

Integration over φ gives

ρ(p⊥, y)p⊥dp⊥dy = 2πI0[γVp⊥/T ]e−γm⊥ cosh y/Tp⊥dp⊥dy (21)

Also integration over y can be explicitly performed:

ρ(p⊥, y)p⊥dp⊥ = 2πI0[γVp⊥/T ]K0[γm⊥/T ]p⊥dp⊥ (22)

where we have used the identities∫ 2π

0
e−z cosφdφ = I0(z);

∫ ∞
0

e−z cosh ydy = K0(z) (23)



APPENDIX 2
Denoting

v
(k)
m =

∫
dYFm(Y ) [n̄ g(δ,Y )]k (24)

we obtain

F1 =< n >=
N∑

m=−N
v

(1)
m (25)

F2 =
N∑

m=−N

{
v

(2)
m − [v

(1)
m ]2

}
+ [F1]2 (26)

F3 =
N∑

i=−N
v

(3)
i + 3

∑
i

v
(2)
i

∑
j 6=i

v
(1)
j +

∑
i 6=j 6=k

v
(1)
i v

(1)
j v

(1)
k =

=
N∑

i=−N

{
v

(3)
i + 2[v

(1)
i ]3 − 3v

(2)
i v

(1)
i

}
+ 3F2F1 − 2F 3

1 (27)


